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Abstract14

Population dynamics vary in space and time. Survey designs that ignore these dynamics15

may be inefficient and fail to capture essential spatio-temporal variability of a process.16

Alternatively, dynamic survey designs explicitly incorporate knowledge of ecological17

processes, the associated uncertainty in those processes, and can be optimized with respect to18

monitoring objectives. We describe a cohesive framework for monitoring a spreading19

population that explicitly links animal movement models with survey design and monitoring20

objectives. We apply the framework to develop an optimal survey design for sea otters in21

Glacier Bay. Sea otters were first detected in Glacier Bay in 1988 and have since increased in22

both abundance and distribution; abundance estimates increased from 5 otters to >5,00023

otters, and they have spread faster than 2.7 km per year. By explicitly linking animal24

movement models and survey design, we are able to reduce uncertainty associated with25

forecasting occupancy, abundance, and distribution compared to other potential random26

designs. The framework we describe is general, and we outline steps to applying it to novel27

systems and taxa.28

Key words abundance, colonization, design criteria, invasion, ecological monitoring,29

model-based sampling, multiple imputation, objective function, optimal dynamic survey design,30

sea otters31

Introduction32

Population spread is a fundamental theme in ecology (Bullock et al. 2002). Applications include33

reintroductions of endangered species, invasive species management, and the emergence or34

re-emergence of wildlife or plant disease (Hooten et al. 2007, Williams et al. 2017, Hefley et al.35

2017). The distribution and abundance of a spreading population is a dynamic process that36

changes in space and time. These dynamics make it challenging to develop efficient monitoring37

designs that must consider, not only where populations have been in the past, but also, where38
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populations are expected to be in the future. For example, sea otters (Enhydra lutris) in Glacier39

Bay have increased rapidly in distribution and abundance through time, requiring surveys to cover40

larger spatial domains, while operating under the same financial constraints.41

During the multi-national commercial maritime fur trade of the 18th and 19th centuries, sea42

otters were extirpated from southeastern Alaska. Legislation following the maritime fur trade,43

including the International Fur Seal Treaty (1911), the Marine Mammal Protection Act (1972),44

and the Endangered Species Act (1977) provided legal protection to sea otters from most harvest45

(Kenyon 1969, Bodkin 2015, Williams et al. In Review). Legal protection, combined with46

translocations by wildlife agencies helped sea otters colonize much of their former distribution.47

By 1988, sea otters were documented at the mouth of Glacier Bay. Since then, sea otter abundance48

has increased an estimated 21.5% per year, a rate near their biological maximum reproductive49

rate. Further, sea otters have spread across Glacier Bay at a rate of at least 2.7 km per year. They50

are now one of the most abundant marine mammals in Glacier Bay (Williams et al. In Review).51

Beginning in 1999, a design-based survey was used to monitor the abundance of sea otters52

in Glacier Bay (Bodkin and Udevitz 1999). The survey was conducted eight times between 199953

and 2012, and consisted of systematically selected transects with random starting points54

(Esslinger et al. 2015). Survey effort was stratified based on ocean depth and shoreline features55

(Bodkin and Udevitz 1999). The northern extent of surveys was based on the existing distribution56

of sea otters. Initially, while sea otter distribution was relatively concentrated, abundance57

estimates were precise; between 1999 and 2006, the mean of the standard errors equaled 28058

otters (mean abundance = 1,496). As sea otters increased in abundance and distribution, distance59

between transects were increased to accommodate the increasing spatial extent of the sea otter60

distribution. However, the number of transects remained relatively constant due to logistical and61

budgetary constraints. As transects became more sparse, and as abundance increased, standard62

errors of abundance estimates increased, as did coefficients of variation. By 2012, the last year the63
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survey was conducted, the estimated abundance was 8,508 sea otters, and the standard error was64

greater than 2,200 sea otters (Esslinger et al. 2015, Williams et al. In Review).65

In 2015, sea otters were selected as a vital sign for long-term ecological monitoring by the66

National Park Service due to their role as a keystone predator, and their influence in structuring67

nearshore marine communities (Estes and Palmisano 1974). The National Park Service is68

concerned with developing a statistical monitoring framework that maximizes efficiency to69

estimate sea otter abundance and distribution in Glacier Bay. The monitoring framework will70

serve as the foundation for understanding sea otters’ role as drivers of the nearshore benthic food71

web. Thus, a survey design that provides precise and rigorous estimates of abundance,72

distribution, and colonization dynamics is required.73

Many ecological processes, including population spread, exhibit spatial patterns that change74

over time in a dynamic, yet predictable fashion. These dynamics are often ignored when75

developing spatial survey designs (Wikle and Royle 2005). However, efficient monitoring of such76

spatio-temporal processes can be achieved by modeling the dynamic process and associated77

uncertainty, and choosing future sampling locations that best help to reduce the uncertainty in the78

process (Hooten et al. 2009). There has been a proliferation of statistical methods for modeling79

and forecasting the distribution and abundance of a spreading population (e.g., Wikle 2003, Wikle80

and Hooten 2006, Hooten et al. 2007, Hooten and Wikle 2008, Williams et al. 2017). Although81

mathematical and statistical models are widely used for inferring population spread, rarely are82

data collection and modeling explicitly linked in a unifying framework.83

Dynamic survey designs provide a cohesive framework for coupling models of population84

spread, and the optimal selection of sampling locations. We distinguish dynamic survey designs85

from traditional statistical notion of adaptive sampling (sensu Thompson 1990), although the two86

concepts are related. Dynamic survey designs are common in environmental monitoring,87

including: monitoring hurricanes via aircraft (Wikle and Royle 1999), ozone monitoring (Wikle88
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and Royle 1999), meteorological forecasting (Berliner et al. 1999), and ground-water-pollution89

source identification (Mahar and Datta 1997). However, dynamic survey designs have been90

applied to few long-term ecological monitoring programs (e.g., Wikle and Royle 2005, Hooten91

et al. 2009, Evangelou and Zhu 2012, Hooten et al. 2012).92

We have four objectives in this paper: 1) introduce concepts and terminology related to93

optimal dynamic survey designs, 2) describe a general statistical framework for mechanistically94

modeling population spread, 3) fuse statistical models of population spread and dynamic survey95

designs in one coherent framework, and 4) apply the framework to monitoring sea otters in96

Glacier Bay. Although we motivate this application using monitoring of sea otters in Glacier Bay,97

we describe the methods in sufficient generality to be applicable to any system or taxa in which98

investigators are interested in modeling and monitoring the distribution, abundance, and99

colonization dynamics of a spreading population.100

Optimal dynamic survey design101

In this section, we describe the general methodology to develop an optimal dynamic survey102

design for a spreading population. Population spread is an ecological process that evolves103

spatially through time. To improve our understanding in how this process evolves, we first require104

a baseline understanding of the ecological process, and the associated uncertainty. Thus, a105

statistical model that incorporates our current understanding of the ecological process is required106

so that we can predict what the population is likely to do in future monitoring periods. If we can107

predict future behavior, and the associated uncertainty, we can then choose survey locations that108

help reduce uncertainty in our understanding of the process (Hooten et al. 2009). This is the109

fundamental notion behind the basic steps of dynamic survey designs that we describe next.110

Dynamic survey designs can be broken down into a series of steps that are each111

conceptually straightforward (Fig. 1). First, a dynamic spatio-temporal process, such as112
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occupancy or abundance (and the associated uncertainty) is modeled using baseline data. Second,113

using the model from the first step, a statistical forecast is made. The forecast provides a basis for114

examining potential survey designs that could be implemented in the future. Third, investigators115

identify the objectives they wish to achieve with their monitoring (e.g., Nichols and Williams116

2006, Lindenmayer and Likens 2009). Objectives, or design criteria, typically include117

minimizing average prediction variance, minimizing maximum prediction variance (mini-max),118

or minimizing variance of parameter estimates (Wikle and Royle 1999; 2005, Hooten et al. 2009),119

but could also include minimizing multi-model uncertainty (Nichols and Williams 2006), cost120

(Field et al. 2005, Hauser and McCarthy 2009, Sanderlin et al. 2014), or some combination121

thereof (Williams and Kendall 2017). Fourth, after a design criterion is selected, a design is122

chosen that optimizes the design criterion. Fifth, data are then collected using the optimal design.123

The original model used to make the forecast is then updated with the new data. This process is124

iterated through time, increasing the understanding of the underlying ecological process of125

interest. In this regard, optimal dynamic survey designs are analogous to adaptive resource126

management, an iterative process of decision making in the face of uncertainty, with an aim to127

reducing management uncertainty through time by monitoring the system’s response to128

management (e.g., Lindenmayer and Likens 2009, Johnson et al. 1997).129

In what follows, we discuss methods for implementation of these steps generally, such that130

they may be tailored to other systems and taxa for which investigators seek to model and monitor131

population spread. We then describe how we tailored these general methods to the specific task of132

modeling and monitoring sea otters in Glacier Bay.133

A general spatio-temporal model for population-level animal movement134

Population spread exhibits linear or non-linear dynamics that can be classified as diffusion.135

Diffusion refers to the process of spreading out over an increasingly larger area through time136

(Skellam 1951, Wikle and Hooten 2010). Partial differential equations (PDE) are powerful tools137
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for modeling population-level (i.e., Eulerian) animal movement in ecology (e.g., Skellam 1951,138

Okubo 1980, Andow et al. 1990, Holmes et al. 1994, Turchin 1998, Wikle 2003, Hooten and139

Wikle 2008, Wikle and Hooten 2010, Hooten et al. 2013, Williams et al. 2017). During diffusion,140

individual organisms are usually influenced by habitat type. Individuals move slowly through141

areas that contain necessary resources, and move quickly through areas that do not. Ecological142

diffusion is a flexible diffusion model that accommodates this variation in motility by predicting143

animals will eventually accumulate in desirable habitats, and leave or avoid undesirable ones144

(Turchin 1998, Garlick et al. 2011, Hefley et al. 2017, Williams et al. 2017). Specifically,145

ecological diffusion describes the population-level distribution that results from individual146

random walks, with individual movement probabilities determined by information on local147

habitat conditions (Garlick et al. 2011, Hefley et al. 2017, Williams et al. 2017). Assuming no148

advection or growth, ecological diffusion can be represented by the PDE149

∂u(s, t)
∂t

=

(
∂2

∂s21
+

∂2

∂s22

)
[µ(s, t)u(s, t)], (1)

where ∂u(s,t)
∂t

represents the instantaneous change in abundance intensity over a continuous spatial150

domain with coordinates (e.g., latitude and longitude) s ≡ (s1, s2)
′ ∈ S during time t,151 (

∂2

∂s21
+ ∂2

∂s22

)
is the differential (Laplace) operator, and µ(s, t) represents the diffusion coefficient152

that could vary in space and time. Ecological diffusion differs from other common153

reaction-diffusion models, in that it allows individual movement to be based on local conditions154

such as habitat type (c.f., Fickian and plain diffusion; Garlick et al. 2011). The mathematical155

driver for this difference is that the diffusion coefficient occurs on the inside of the two spatial156

derivatives rather than between them (e.g., Fickian: ∂u
∂t

= ∂
∂x
µ ∂

∂x
(u)) or on the outside (e.g., plain:157

∂u
∂t

= µ ∂2

∂x2 (u)), resulting in a much less smooth process, and motility-driven congregation to158

differ sharply between neighboring habitat types (Hooten et al. 2013). Hefley et al. (2017)159
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recently described the advantages of ecological diffusion for modeling a spreading population160

including: its ability to connect spatio-temporal processes while providing a mechanism that161

captures transient dynamics, preventing animals from instantaneously accessing all high quality162

habitats; its relative simplicity compared to other mechanistic models; and its flexibility in being163

able to capture a wide range of spatio-temporal dynamics. For example, eq. 1 can be further164

generalized to include growth models,165

∂u(s, t)
∂t

=

(
∂2

∂s21
+

∂2

∂s22

)
[µ(s, t)u(s, t)] + f(u(s, t), s, t), (2)

incorporating Malthusian growth (f(u(s, t), s, t) = γ(s, t)u(s, t)), or logistic growth166

(f(u(s, t), s, t) = γ(s, t)(1− u(s, t)/κ(s, t))) where γ(s, t) represents the instantaneous growth167

rate, and κ(s, t) represents equilibrium population size. In principle, each of the modeling168

components, including motility (µ(s, t)), growth (γ(s, t)), and equilibrium density (κ(s, t)) can169

depend on covariates that vary over space and time, although standard model-fitting170

considerations apply (i.e., parsimony) when tailoring these models to each system. We consider171

models that incorporate spatial covariates for diffusion, g(µ(si, t)) = x′(si)β, and growth,172

h(γ(si)) = w′(si)α, where g and h are link functions (e.g., log and identity, respectively), β and173

α are vectors of parameters to be estimated, and x′(si) and w′(si) are vectors containing spatially174

referenced covariate values (Williams et al. 2017).175

Implementation of eqs. 1 and 2 require numerical methods to solve the PDE. Finite176

differencing is a common method for solving PDEs, and is often used when PDEs are177

implemented within a Bayesian hierarchical framework (Wikle and Hooten 2010). Solving a PDE178

using finite differencing involves partitioning the spatial domain S into a grid S (S⊆ S) with m179

cells and the temporal domain T into r bins T of width ∆t (T⊆ T ). Simple finite-difference180
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discretization results in the vector difference equation181

ut =H(α,β)ut−1 + H(α,β)(b)u(b)
t−1, t = 2, ..., T (3)

where ut ≈ u(s, t), H(α,β) is a sparse m×m matrix with five non-zero diagonals182

accommodating diffusion parameters (β) and growth parameters (α), and the superscript (b)183

represents conditions at the boundaries. Each row in H corresponds to a specific cell in the grid S.184

The five non-zero values in each row correspond to the specific cell in H, and the four nearest185

(rook) neighbors of that cell. The values of the non-zero cells are determined by the growth and186

diffusion parameters α and β, respectively, and describe the how ut−1 changes in space through187

time. To simplify notation in what follows, we assume H depends on diffusion and growth188

parameters, but omit the notation for α, β for brevity. We also omit the notation for boundary189

conditions. The accuracy of the numerical approximation of u(s, t) increases as the number of190

cells on the spatial grid increases and ∆t becomes small. For additional details on discretization191

of PDEs and applications of spreading populations, see Wikle and Hooten (2006), Hooten and192

Wikle (2008), Hefley et al. (2017), and Williams et al. (2017); Wikle and Hooten (2006), Hefley193

et al. (2017), and Williams et al. (2017) provide R code for implementation (see Hefley et al.194

2017, Williams et al. 2017, for ecological diffusion).195

Models of ecological diffusion and statistical uncertainty196

Bayesian hierarchical models can be described in terms of three levels (Berliner 1996). At the top197

level, a data model links the observed data and associated variation to latent ecological processes.198

Next, a process model describes the underlying ecological processes (i.e., spatio-temporal199

colonization dynamics). Finally, parameter models represent prior knowledge about the parameter200

inputs in the ecological process model and data model. This framework allows us to incorporate201

mathematical models that characterize spreading populations, such as the PDEs in eqs. 1 or 2, as202
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process models within a statistical framework, permitting appropriate estimation of uncertainty at203

multiple levels (Wikle 2003, Hooten and Wikle 2008, Wikle and Hooten 2010, Cressie and Wikle204

2011, Hooten et al. 2013, Hefley et al. 2017, Williams et al. 2017). Using the discretized form of205

ecological diffusion in eq. 3, this framework is written hierarchically as206

Data Model: yt(si) ∼ [yt(si)|nt(si), φ], t = 1, . . . , T,

Process Models: nt ∼ [nt|ut, ν],

ut = Hut−1, t = 2, . . . , T,

u1 = f(ζ)

Parameter Models: θ ∼ [φ, ν,α,β, ζ],

(4)

where yt(si) represents data collected during discrete time t at spatial location si, [a|b] represents207

the probability density (or mass) function of variable a given variable b (Gelfand and Smith208

1990), and nt ≡ (nt(s1), . . . , nt(sn))′. The initial condition for u1 must also be specified, and is209

represented as a function of (potentially vector valued) parameters ζ. Bayesian hierarchical210

models that incorporate PDE processes are flexible and can be modified to address the specifics of211

the study (Hefley et al. 2017). For example, a common specification of eq. 4 for discrete data212

(e.g., count data), consists of a binomial data model (i.e., yt(si) ∼ Binomial(nt(si), φ), where213

nt(si) is the true latent abundance, and φ is the detection probability), and a Poisson process214

model (i.e., nt ∼ Poisson(ut), in which case ν is not necessary). Other process models include215

negative-binomial or Conway-Maxwell Poisson distributions (in which case, ν is a parameter that216

controls either overdispersion or underdispersion, respectively; Wu et al. 2013). Equation 4 can217

be further generalized to address error in discretization, model uncertainty, and environmental218

stochasticity. For example, ut = Hut−1 + εt, where εt ∼ Normal(0,Σ), and Σ is a covariance219

matrix describing (potentially spatially autocorrelated) error in ut (Wikle and Hooten 2010,220
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Thorson et al. 2017).221

Although discretization of the PDE (i.e., eq. 3) provides a convenient form that results in a222

series of matrix equations, it is important to note that the theoretical foundations for this model223

are based in continuous time and space, and discretization provides only an approximate solution224

that may contain error. Coarser discretizations are more likely to contain larger error. Further,225

maintaining the connection to the PDE defined in continuous time and space (as we do in our226

specific application to sea otters, below; eq. 7) is advantageous for development and facilitation227

of numerical techniques for efficient implementation (e.g., homogenization; Garlick et al. 2011,228

Hooten et al. 2013, Hefley et al. 2017).229

Forecast distribution230

Forecasting the ecological process and associated uncertainty is necessary for optimal dynamic231

survey design. That is, we seek the probability distribution of the true state at the future point in232

time when data will be collected, conditional on the data we collected in the past (i.e., the forecast233

distribution, or the predictive process distribution, sensu Hobbs and Hooten 2015). The forecast234

distribution is defined as235

[uT+1|y1, . . . , yT ] =

∫
. . .

∫
[uT+1|uT ,θ][u1, . . . ,uT ,θ|y1, . . . , yT ]dθdu1 . . . duT . (5)

The Bayesian hierarchical model described in eq. 4 provides straightforward calculation of the236

forecast distribution. Obtaining [uT+1|y1, . . . , yT ] is as simple as changing the range of the index237

for t in eq. 4 to t = 2, ..., T + 1, and sampling u(k)
T+1 on each k = 1, . . . , K iteration of an MCMC238

algorithm (Tanner 1996, Hobbs and Hooten 2015). The posterior predictive distribution can then239

be easily obtained from the forecast distribution using two additional steps; first sample240

n(k)
T+1 ∼ [nT+1|u(k)

T+1, ν
(k)]. Then sample y(k)

T+1 ∼ [yT+1|n
(k)
T+1, φ

(k)] for all k to obtain241

[yT+1|y1, . . . , yT ]. The forecast distribution and posterior predictive distribution can then be used242
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to select a survey design that is optimal with respect to a design criterion.243

Design criteria244

Design criteria are mathematical representations of the objectives investigators seek to achieve by245

collecting data (Williams and Hooten 2016). As such, design criteria are specific to each study.246

However, a common objective of collecting data for many studies is to reduce the uncertainty247

associated with ecological forecasts/predictions. That is, choose a survey design d that allows us248

to minimize the uncertainty associated with [uT+1|y1, . . . , yT ], or some derived parameter of249

uT+1. Several authors have discussed specific design criteria (e.g., Wikle and Royle 1999,250

Berliner et al. 1999, Wikle and Royle 2005, Le and Zidek 2006, Hooten et al. 2009), as well as251

efficient methods for estimating them (e.g., Kalman filters). Here, we consider choosing a design252

that minimizes the uncertainty of utotal,T+1 =
∑n

i=1 ui,T+1, the sum of the dynamic253

spatio-temporal process representing abundance intensity in future years. Specifically, the design254

criterion we consider is the empirical variance of the future abundance estimate255

qd =
1

K

K∑
k=1

(
u
(k)
total,T+1,d −

1

K

K∑
k=1

u
(k)
total,T+1,d

)2

, (6)

where k = 1, . . . , K corresponds to the kth MCMC iteration, and u(k)total,T+1,d is the sum of the256

forecasted process at time T + 1, estimated using real data, y1, . . . , yT , and future data, yT+1,d.257

Obviously, future data are unavailable prior to the survey. Lacking such data, one approach is to258

use the mean of the posterior predictive distribution as a surrogate for future data, and assume it259

represents the true data that remain to be collected. This technique, known as imputation, may not260

accommodate the proper uncertainty associated with data collection. Another technique, known261

as multiple imputation, helps to account for the uncertainty associated with the modeled data that262

we intend to use for identifying optimal survey designs (Rubin 1996, Hooten et al. 2017, Scharf263

et al. 2017).264
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Multiple imputation265

Implementing multiple imputation within a Bayesian model using MCMC is straightforward266

(Hooten et al. 2017). First, the model is fit using the original data, y1, . . . , yT . Second, K267

posterior predictive realizations of future data y(k)
T+1 are sampled for MCMC samples268

k = 1, . . . , K, using the methods described in Forecast distribution, above. Third, the model is269

re-fit using a modified MCMC algorithm. Instead of conditioning only on the fixed data,270

y1, . . . , yT , on the kth iteration of the MCMC algorithm, we use the fixed data and y(k)
T+1. Finally,271

we obtain posterior summaries for model parameters, and derived parameters including utotal,T+1.272

The modified MCMC algorithm will integrate over the uncertainty in the true future data, and273

incorporate the uncertainty in the inference for the model parameters (Hooten et al. 2017).274

Given the Bayesian hierarchical model described in eq. 4, the forecast distribution described275

in eq. 5 (and the associated posterior predictive distribution), and a design criterion described in276

eq. 6, pseudo-code for combining animal movement models and survey design to identify the277

optimal monitoring of a spreading population is provided in Box 1.278
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Box 1. Pseudo-code for combining animal movement models and survey design to iden-

tify the optimal monitoring of a spreading population.

1. Fit a model (i.e., eq. 4) with baseline data y1, . . . , yT .

2. Forecast u(k)
T+1 for all k = 1, . . . , K MCMC samples using eq. 5.

3. Sample K posterior predictive realizations of future data y(k)
T+1 for k = 1, . . . , K

MCMC samples.

4. Select a design d that contains a subset of all possible survey locations in study

area D.

5. Use multiple imputation to re-fit the model with baseline data y1, . . . , yT , and im-

puted data y(k)
T+1,d, where y(k)

T+1,d are imputed for locations defined by design d.

6. Calculate u(k)total,T+1,d =
∑n

i=1 u
(k)
i,T+1,d from the model fit in step 5.

7. Use u(k)total,T+1,d to calculate eq. 6 from the text.

8. Repeat steps 1-7 for all designs under consideration, and identify the design that

minimizes qd.

279

The number of potential designs d that could be considered in most ecological studies is too large280

(e.g., trillions) to evaluate all of them due to computational constraints, precluding identification281

of a globally optimal design. Alternatively, investigators could consider, for example, a random282

subset of designs, exchange algorithms (Cook and Nachtrheim 1980, Fedorov and Atkinson 1988,283

Nychka and Saltzman 1998), or both. These alternatives sacrifice global optimality for284

computational efficiency to find a locally optimal solution.285

After the optimal design has been identified, the new data, yT+1,d, can be collected, the286

model can be subsequently re-fit using the new data, ecological learning can be assessed by287
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comparing the previous model fit to the new model fit, and the procedure can be repeated to288

identify the optimal design for time T + 2. In the next section, we apply this general procedure to289

identify optimal transects to survey for estimating the distribution, abundance, and colonization290

dynamics of sea otters in Glacier Bay.291

Application: sea otters in Glacier Bay292

We used the general framework described above to identify an optimal dynamic survey design for293

sea otters in Glacier Bay. We used baseline data to develop a Bayesian hierarchical model of294

population spread, with a process model tailored from the general ecological diffusion PDE295

described in eq. 2. We then use our model to forecast abundance and distribution to a future time296

step. Finally, we select a design that is optimal with respect to the forecast distribution, and a297

design criterion motivated by minimizing process prediction uncertainty.298

Baseline data299

Sea otter occupancy and abundance data have been collected over a 20-year period between 1993300

and 2012. A detailed description of the methods that were used for collecting data are provided in301

Bodkin and Udevitz (1999) and Williams et al. (2017). Briefly, a design-based survey was302

conducted eight times (1999–2004, 2006, 2012), and a distributional survey was conducted eight303

times (1993, 1995–1998, 2005, 2009, 2010). The design-based survey consisted of observers304

flying in aircraft piloted along transects. The transects were systematically placed across Glacier305

Bay, with a random starting point. Observers flew along transects and recorded the number of sea306

otters observed within 400 m of the transect, and mapped the location of sea otters during307

observations. The distributional surveys consisted of observers flying in aircrafts that were piloted308

in close proximity to shorelines and islands, the preferred habitat of sea otters (Williams et al.309

2017, Williams et al. In Review). Pilots did not follow pre-determined routes during distributional310

surveys. An additional data set was collected during the design-based survey to estimate detection311
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probability (Williams et al. 2017).312

Statistical diffusion model and forecast313

We tailored eq. 4 to the sea otter data following Williams et al. (2017) and Williams et al. (In314

Review). Retaining connection to the continuous time, continuous space process model, we315

assumed316

Data Model: yt(si) ∼ Binomial(nt(si), φ),

Process Model: nt(si) ∼ Poisson(ut(si)),

∂u(si, t)
∂t

=

(
∂2

∂s21
+

∂2

∂s22

)
[µ(s, t)u(s, t)] + γ(si)u(si, t), t > 1

u(si, 1) =
τe
−|si−d|2

ψ2∫
S
e
−|si−d|2

ψ2 ds
, t = 1

log(µ(si)) = β0 + β1(depth(si)) + β2(dist(si)) + β3(depth(si)× slope(si))

+ β4(complexity(si))

γ(si) = α0

Parameter Models: φ ∼ Beta(1, 1)

β ∼ Normal(0, σ2I)

α ∼ Normal(0, 1.52)

ψ ∼ Normal+(5, 0.001)

τ ∼ Normal+(500, 10)

(7)

where yt(si) were sea otter count data within a 400×400 m grid cell centered at location si during317

time t, nt(si) was the true latent abundance of sea otters, φ was the individual sea otter detection318

probability, and ut(si) was the dynamic spatio-temporal process (abundance intensity) when data319
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were collected during time t. We used a scaled Gaussian kernel for our initial condition for320

abundance intensity, with two parameters ζ ≡ (τ, ψ)′, controlling the height and spread of the321

kernel, respectively, around an epicenter d. The epicenter represents the location of an initial322

colonization event at the beginning of the time series. We used a log-linear relationship between323

motility and four spatial habitat covariates that we hypothesized affect sea otter motility. The324

covariates were ocean depth (an indicator of depth<40 m), distance to shore, slope of the ocean325

floor, and an index for shoreline complexity that was calculated by summing the number of326

shoreline grid cells that were within 1,000 m of each grid cell. We used the interaction between327

depth and slope because the slope of the ocean floor may only be important if it is shallow enough328

for sea otters to reach it during feeding dives.329

We assumed the growth rate was constant across space and time for simplicity and because330

design-based estimates of abundance suggested that Glacier Bay is still in a rapid growth phase331

(Williams et al. In Review). However, increasing evidence suggests that density dependence in332

sea otters occurs at relatively fine spatial scales (Bodkin 2015, Tinker 2015), and it is possible that333

density dependence may be limiting growth in some areas of Glacier Bay. Further, there is334

extensive evidence that sea otters alter their own ecosystems through a series of direct and335

indirect food web impacts. Thus, both diffusion and growth may change through time, and in336

principle, could be incorporated in our model formulation, provided sufficient data exist to337

estimate the required parameters. Our approach was to identify a parsimonious model and use a338

model checking procedure to evaluate our assumptions of exponential growth and static diffusion339

rates through time.340

We used vague prior distributions for all parameters except for the shrinkage parameter σ,341

and the initial condition parameters, τ and ψ. We parameterized the initial condition parameters342

based on observations of sea otters during the first year of monitoring, where Normal+ represents343

the zero-truncated normal distribution.344
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We fit the model described in eq. 7 to the baseline data using a custom MCMC algorithm345

written in R version 3.3.2 (R Core Team 2013) and C++. For each model fit, we obtained two346

chains of 50,000 MCMC draws and discarded the first 10,000. We examined convergence using347

trace plots and Gelman-Rubin diagnostics. To facilitate computation, we used homogenization to348

implement the model (Garlick et al. 2011, Hooten et al. 2013, Hefley et al. 2017, Williams et al.349

2017). Homogenization is a multi-scale technique that allowed us to optimally up-scale350

(decrease) the resolution of our spatial domain for computation, and then optimally downscale351

(increase) the resoultion of the spatial domain to make fine-scale inference. We used352

regularization combined with k-fold cross-validation to conduct model selection. Specifically, we353

first randomly partitioned the data into 8 folds. Second, we selected a diffuse value of σ and fit the354

model using seven of the eight groups of data. Third, we used the remaining group of data to355

calculate the log-posterior predictive distribution score function (Hooten and Hobbs 2015).356

Fourth, we repeated the procedure for the remaining seven combinations of data and summed the357

log-posterior predictive distribution score function for all eight hold-out samples. Fifth, we358

decreased σ (a mechanism to induce regularization) and repeated this procedure. That is, we359

calculated the sum of the log-posterior predictive distribution score function for each σ over a360

range of values and identified which value of σ resulted in the best (lowest) score. We used the361

resulting value of σ in our final model for prediction and inference. We assessed goodness of fit362

of our final model using Bayesian p-values (see Williams et al. In Review for more details). We363

then estimated the forecast distribution for T + 5 = 2017, because the last time sea otter data364

were collected was T = 2012 (Fig. 2).365

Optimal design366

Potential survey transects367

To identify the set of all potential transects that could be surveyed, we partitioned Glacier Bay368

into a regular grid of 400×400 m cells (23,800 total cells). We selected 400 m as the unit of369
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length for two reasons. First, this partitioning assisted with computation, because computation at370

a finer resolution became prohibitive. Second, 400×400 m represented the scale at which the371

baseline data were collected. After partitioning Glacier Bay into 400×400 m grid cells, there372

were 170 potential transects (running West to East) from which we could select a sampling373

design. This resulted in
(
170
n

)
unique possible designs that could be considered, where n is the374

number of transects that could be flown during a survey. We chose East-West transects to simplify375

navigation, computation, and to align with the previous design-based surveys that used East-West376

transects in the past.377

Selecting an optimal design378

We selected a sample size of n = 20 transects to be used for our monitoring design. Twenty379

transects were approximately the maximum number of transects that can be flown in one day.380

This resulted in a total number of possible designs that was much larger than one trillion. It is not381

feasible to calculate the design criterion qd for all possible unique designs, thus we considered an382

approach based on improving efficiency relative to a random selection of transects. First, we383

selected a large number of different designs, d, uniformly at random and calculated the design384

criterion qd for each design using eq. 6. Fitting the sea otter model described in eq. 7 to the385

baseline data described above, and calculating qd for one design required approximately 10 hours386

to obtain 50,000 MCMC samples. To facilitate fitting a large number of different random designs,387

we used the Amazon Elastic Compute Cloud (Amazon EC2 R©, instance: Linux m4.16xlarge;388

with 64 vCPUs) to calculate qd for 64 different random designs in parallel. We then compared qd389

among all 64 designs, and selected the design that minimized qd. A histogram of the qd values for390

all 64 random designs we examined is shown in Fig. 3.391

After we identified the optimal set of random transects, we further improved the design392

using an exchange algorithm (Royle and Nychka 1998). That is, we sequentially exchanged each393

of the 20 transects with their neighbors (one transect above it, and one transect below it), and394
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recalculated qd after the exchange. This required re-fitting the model with the inclusion of a395

neighboring transect and the exclusion of the original transect. If the exchange improved qd, we396

retained the new transect in place of the old transect. Then, the next transect on the list was397

exchanged. The process repeated until the design criterion could not be improved through398

exchange. Because each exchange requires re-fitting the model, and it must occur sequentially399

(except for examining the two immediate neighbors, which can occur in parallel), this required a400

sequence of several model fits. However, in practice, convergence to the optimal survey design401

occurs with relatively few exchanges using this approach. The sea otter survey required six402

exchanges before qd could no longer be improved through exchange.403

Results404

The posterior mean abundance estimates of sea otters in 2017 were similar among all designs405

(mean = 9,430; range = 9,250–9,770), suggesting mean abundance estimates were not sensitive to406

the choice of designs we considered. However qd values ranged from 66,685 (best) to 88,948407

(worst) and averaged 76,680 (Fig. 3). Thus, the qd value of the optimal design improved by 13%408

when compared to the average qd value of all other designs we considered. The optimal survey409

design is shown in Fig. 4.410

Discussion411

How to best use available resources to monitor ecological processes for conservation,412

management, and ecological insight remains a critical area of scientific investigation (Nichols and413

Williams 2006). Probabalistic (i.e., design-based) surveys have been used widely in ecology, and414

can provide data that result in objective, unbiased estimates of abundance (Cochran 2007,415

Thompson 2012). However, when financial resources limit the effort that can be devoted to416

collecting data, classical design-based inference may result in estimates that are insufficiently417

precise for management or conservation (e.g., sea otters in Glacier Bay). The situation becomes418
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more accute for populations that are spreading in space through time. Alternatively, optimal419

dynamic survey designs allow managers and scientists the ability to extract the most information420

out of the data they can afford to collect. Further, dynamic survey designs better allow for the421

observation of dynamically evolving spatio-temporal processes, and ultimately result in higher422

quality data (Wikle and Royle 1999; 2005, Hooten et al. 2009).423

Optimal dynamic survey designs are becoming widespread in atmospheric and424

environmental studies. However, they have been used in relatively few long-term ecological425

studies (Hooten et al. 2009). While model-based inference has become ubiquitous in ecology,426

survey design and modeling are usually developed independently of each other. By explicitly427

linking survey design, and the models that will be fit to future data, we gain the ability to employ428

more sophisticated ecological models that ultimately contain less uncertainty (Hooten et al. 2009).429

We described a general, cohesive framework for modeling and monitoring population-level430

animal movement that explicitly links survey design, data collection, and monitoring objectives.431

The generality of this framework stems from the flexibility of hierarchical statistical models to432

draw conclusions from data that arise from complex ecological processes, the flexibility of PDEs433

(specifically, ecological diffusion) to capture a wide range of spatio-temporal dynamics, and the434

ability to tailor design criteria to meet the objectives of each unique study. We applied the435

framework to identify an optimal dynamic survey design for sea otters in Glacier Bay. Sea otters436

have been identified as a vital sign for Glacier Bay. Vital-sign monitoring is used to track specific437

ecosystem processes that are selected to represent the overall health or condition of park438

resources, known or hypothesized effects of stressors, or elements that have important human439

values. Inference that results from monitoring is then used by employees and partners to support440

management decision-making, park planning, research, education, and public understanding of441

park resources. Thus, a survey design that results in precise and rigorous estimates of abundance,442

distribution, and colonization dynamics is required. We examined a monitoring scenario in which443
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available funding permitted surveying 20 of the 170 potential transects that partition Glacier Bay.444

Generally, posterior mean estimates of sea otter expected abundance were similar among the445

designs we considered; all designs predicted approximately 9,500 sea otters in 2017. However,446

the uncertainty associated with these predictions varied widely among designs. The optimal447

design reduced prediction uncertainty by 13% compared to the mean of all the random designs448

that were considered (Fig. 3). The dynamic survey designs employed for sea otter surveys here,449

are applicable to any type of aerial survey method used for sea otters, including aerial450

observations where observers count sea otters from an aircraft (Bodkin and Udevitz 1999), or451

aerial photographs (Williams et al. In Press).452

The design criterion we employed, chosen by the National Park Service, is a measure of the453

prediction uncertainty of the expected abundance of sea otters in Glacier Bay (i.e., how many sea454

otters are there next year). Many choices of design criteria are possible, and depend on the455

objectives of the study. The explicit choice of a design criterion pairs survey design with the456

motives of a decision maker in a decision theoretic framework (Wald 1950, Savage 1954,457

Williams and Hooten 2016). This pairing is natural in monitoring for ecology because data are458

often collected with the explicit purpose to inform both models and decisions. Nichols and459

Williams (2006, p. 668) state “targeted monitoring is defined by its integration into conservation460

practice, with monitoring design and implementation based on a priori hypotheses and associated461

models of system responses to management.” Thus, the framework we present is directly462

amenable to targeted monitoring, sensu Nichols and Williams (2006), due to the explicit463

incorporation of a design criterion. Further, by selecting a design criteria focused on minimizing464

structural (i.e., multi model) uncertainty, or the uncertainty associated with management actions,465

the framework becomes amenable to adaptive resource management (e.g., Johnson et al. 1997),466

and our framework provides an efficient method for achieving targeted monitoring for467

conservation. That is, it is a method for explicitly focusing monitoring efforts on crucial468
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information needs in the conservation process, and therefore, the effectiveness of conservation469

can be greatly increased (Nichols and Williams 2006).470

Monitoring dynamic processes optimally is a growing subject in ecology. There is much471

more to learn about the choice of design criterion for estimating and predicting count data (Wikle472

and Royle 2005). In the sea otter example presented, minimizing prediction uncertainty was a473

logical choice for a design criterion. Establishing the theoretical optimality properties of this, and474

other design criteria, remains an area of active research. Other subjects of future research include475

the impact of alternative design criteria on selecting monitoring locations, the sensitivity and476

robustness of inference and predictions to recurrent surveys and model (mis)specification, and477

confronting potential bias due to preference sampling (sensu Diggle et al. 2010, Conn et al. In478

Press).479

Extentions of dynamic survey designs include hybrid survey designs. Hybrid survey designs480

combine classical survey techniques (e.g., random sampling) with dynamic survey designs to481

identify an optimal dynamic survey design (Hooten et al. 2009; 2012). Hybrid survey designs are482

advantageous because they leverage the benefits of traditional survey techniques (e.g., generally483

more convenient, economically feasible, and computationally inexpensive), with the benefits of484

dynamic survey designs (e.g., optimal efficiency, capture spatio-temporal evolution in a process,485

flexibility to add or remove monitoring locations as budgets change; Hooten et al. 2009). When486

hybrid survey designs contain a design-based sampling component, the design-based data can be487

used alone to obtain design-based estimates of abundance, and may provide desirable statistical488

characteristics (e.g., unbiased estimation; Cochran 2007, Thompson 2012, although at a cost in489

precision). When using a hybrid approach, investigators can evaluate the efficacy of each490

sampling type to examine the potential trade-off in bias vs. variance.491

Finally, spreading populations are ideal candidates for dynamic survey designs because492

spreading populations have significant spatio-temporal interactions that are difficult to observe493
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using traditional survey designs. The spatio-temporal processes that regulate population spread494

are often of ecological interest (e.g., processes that influence species invasions, mesopredator495

release, (re)establishment of apex predators; Williams et al. 2017). When baseline data exist to496

develop appropriate models of population spread, implementing dynamic survey designs for497

future data collection provide an opportunity to maximize efficiency in learning about these498

spatio-temporal processes (Wikle and Royle 1999). When resources are limited, as they always499

are, the efficient use of monitoring is vital to successful conservation (Nichols and Williams500

2006).501
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Figure 1 Schematic of optimal dynamic survey design.652

Figure 2 Forecasted mean of dynamic spatio-temporal process (u2017(s)) representing653

abundance intensity of sea otters in Glacier Bay National Park, Alaska. Units are mean sea otters654

per 400 m2
655

Figure 3 Histogram of qd values from 64 randomly selected designs (gray) and the optimal656

design (black), each design containing 20 randomly selected transects to be flown over Glacier657

Bay National Park in the upcoming survey year. The design criterion qd was calculated using eq.658

6 from the text, and corresponds to reducing uncertainty in the forecast distribution of mean total659

abundance of sea otters in the future year. The best random design had qd = 57, 439 (dark gray),660

and was improved to qd = 55, 261 (black) using an exchange algorithm. The mean value of qd for661

the 64 random transects equaled 62,804 (vertical line).662

Figure 4 Optimal dynamic survey design for sea otters in Glacier Bay National Park, 2017.663

664
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