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Summary

Binary regression models are ubiquitous in virtually every scientific field. Frequently, traditional
generalised linear models fail to capture the variability in the probability surface that gives rise to
the binary observations, and remedial methods are required. This has generated a substantial
literature composed of binary regression models motivated by various applications. We describe
an organisation of generalisations to traditional binary regression methods based on the familiar
three-part structure of generalised linear models (random component, systematic component and
link function). This perspective facilitates both the comparison of existing approaches and the
development of flexible models with interpretable parameters that capture application-specific
data-generating mechanisms. We use our proposed organisational structure to discuss concerns
with certain existing models for binary data based on quantile regression. We then use the
framework to develop and compare several binary regression models tailored to occupancy data
for European red squirrels (Sciurus vulgaris).
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1 Introduction

In almost every area of scientific application, binary regression models are used to understand
how the probability of a ‘success’ depends on covariates of interest. In most cases, generalised
linear models (GLMs Nelder & Wedderburn, 1972) are employed to learn about this probability
function. The traditional three-part structure of random component, systematic component and
link function provides researchers flexibility in the parametric form of the probability function.
In practice, these components are often specified based on commonly used defaults and without
consideration of the real natural phenomena that generated the observed binary data. Moreover,
the most widely used GLMs often require rigid assumptions that are unrealistic. The need
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for flexible binary regression models that relax assumptions about the data-generating process
has resulted in a substantial literature motivated by various applications. We organise general-
isations of traditional binary regression methods based on the familiar three-part structure of
GLMs. We use our proposed organisational structure to discuss concerns with certain existing
models for binary data based on quantile regression. Then, we use the framework to develop
and compare several binary regression models tailored to occupancy data for European red
squirrels (Sciurus vulgaris), and score each model based on its predictive ability. The conclu-
sions from this exploration highlight the need for researchers to consider flexibility, interpret-
ability and predictive power when selecting among several candidate models.

1.1 Background and Notation

Denote by Pr(y; = 1) the probability that a binary response random variable y; is 1 (i.e. that
we observe a ‘success’ for the i-th datum), where i = 1, ..., n indexes the observations. The
goal of a binary regression analysis is to infer the relationship between these probabilities and
a vector of relevant covariates, x;. Thus, interest lies in learning about the characteristics of a
map p: X —[0, 1], parameterised by a (possibly infinitely long) vector, #. The data are generally
assumed to be conditionally independent given the covariates, leading to a log-likelihood of the
form /(0ly) = LI ylog(p;)+(1 — y)log(l — p;), wherey = (y,...,) and p; = p(x;, 0) with
unknown parameters, §. Likelihood-based approaches are often used to fit the model to data,
and software packages for both frequentist and Bayesian paradigms are available to facilitate
model fitting.

The most common framework employed to specify a functional form for the probability sur-
face is a GLM given by

yi~fy(n(x)), n(x) =xg, gEy,) = n(x). (1)

Generalised linear models are often described as consisting of these three parts. The first part,
called the ‘random component’, specifies the probability density of the observed data. The sec-
ond part, called the ‘systematic component’, defines a function 7(x) related to the expected
value of the data. The third part, called the ‘link function’, is represented by the invertible func-
tion g(), and its purpose is to align the systematic component with the support of the expected
value of the response distribution. GLMs are used for a wide range of response types; however,
the remainder of the manuscript focuses on binary data, and thus, fy is always taken to be
Bernoulli. For a more in-depth treatment of GLMs, see, for example, McCullagh &
Nelder (1983) and Agresti (2002).

In many applications, the traditional linear systematic component, paired with a symmetric
link function such as the logit, is a too rigid a form to adequately explain the variation in prob-
ability of an observed binary response. In these situations, traditional approaches must be gen-
eralised to allow for more flexible probability functions. Many new methods seek to account for
variation in binary data showing evidence of extra heterogeneity beyond what is explainable
with simple linear effects and a logit or probit (i.e. Gaussian inverse CDF) link (e.g. Bazan
et al., 2010). These methods have come from a variety of different areas, with applications in
psychology (e.g. Fahrmeir & Raach, 2007), ecology (e.g. Augustin et al., 1996; Komori
et al., 2016), economics (e.g. Khan, 2013) and many other disciplines. We show how general-
isations of traditional GLMs can be usefully grouped based on which of the three GLM compo-
nents are modified to allow for additional flexibility in the probability function.

First, increased flexibility in the functional relationship between the probability of success
and the covariates may be achieved through polynomial relationships (e.g. quadratic) and
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non-parametric approaches that relax the linear form of #(x) (Hastie & Tibshirani, 1986; Hefley
et al.,2017; Wood, 2017). Second, increased flexibility can arise through alternative specifica-
tions of the link function, g(Ey;), to include additional unknown parameters to be estimated
from the data. While several approaches have been proposed for binary regression models that
accommodate asymmetric (Chen et al., 1999; Maalouf & Trafalis, 2011; Komori ef al., 2016) or
heavy-tailed link functions (Wang & Dey, 2010), a clear motivation for specifying a model with
a non-standard link function comes when researchers have knowledge about the data generation
process (e.g. a complimentary log—log link for a latent count process; Section 1.2).

Finally, flexibility in the probability function may be introduced by modifying the response
distribution, or random component. For binary data, the marginal distribution of the responses
must be Bernoulli. However, relaxing the assumption of conditional independence allows re-
searchers to account for residual dependence in the observations while controlling for covariate
effects (e.g. Augustin et al., 1996). One important reason residual dependence may be present in
the data is the existence of important but unaccounted for covariates. Models for dependent bi-
nary data can be achieved through the introduction of random effects in the systematic compo-
nent. Frequently, random effects are indexed by known or unobserved class structures in the
data, or spatio-temporal information (e.g. Diggle et al., 1998; Goldenberg et al., 2010).

Crucially, sources of flexibility in the probability function introduced through multiple com-
ponents do not act independently. For example, two different link functions, g, and g, paired
with two potentially non-linear systematic components 7,(x) and 7,(x) produce exactly the
same probability function if

g ' (m(x)) = g5 (na(x)), )

because the probability of success p; = Ey, = g~ ' (5(x;)) is the same under each pair of links
and systematic functions. A corollary is that a non-linear systematic component paired with
one type of link function has an equivalent representation using a linear systematic component
with another link function. Thus, the specification of the systematic component and the link
function must be made holistically so that parameters are identifiable from binary response data.

To facilitate comparison of the broad range of approaches and to aid practitioners interested
in developing custom models for specific applications, we describe a hierarchical formulation
for binary regression in Section 1.2 that makes use of auxiliary variables. Representing models
through auxiliary variables is illuminating when selecting an appropriate link function. Auxil-
iary variables may correspond to interpretable features of a data generation process and include
more interpretable parameters than traditional formulations.

1.2 Auxiliary Variable Construction

Statistical models for binary data are sometimes specified using an auxiliary variable con-
struction such that

yilzi = 1, 5 0, zilB ~ 1 (zilxi, B), (3)

where 1., - ¢ is an indicator function that is equal to 1 when z; is positive and 0 otherwise,
and the conditional distribution f7 is a member of a family of probability density functions
with parameters that depend on x; and f. The probability distribution for y,|# is Bernoulli
with probability of a success equal to the probability that the auxiliary variable, z;, exceeds 0,
or 1 — Fz(0|8), where F; is the cumulative distribution function for f;. An early
well-known example of such a hierarchical construction came from Albert & Chib (1993)
who noted that probit regression arises when f; is chosen to be a Gaussian density with mean
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[Ez;|p = x/f and variance 1. This is due to the symmetry of the Gaussian distribution, which
yields 1 — ®O(—x'f) = ®(x'B). The benefit of the hierarchical specification in this case is that
a conjugate prior exists for f (multivariate Gaussian), and model fitting can proceed from a
Bayesian perspective using a Markov chain Monte Carlo (MCMC) algorithm comprised en-
tirely of Gibbs updates, obviating the need to adjust tuning parameters required by other
methods such as Metropolis—Hastings random walks. The approach has been used in a wide va-
riety of applications including species occupancy models in ecology (e.g. Hooten et al., 2003;
Dorazio & Rodriguez, 2012; Johnson et al., 2013).

Hierarchical representations of binary regression models share a close connection
with GLMs. In general, a hierarchically specified binary regression model is equivalent to a
GLM if there exists a link function and systematic component such that g~ !(5(x;)) =
1 — Fz(z; = 0|f). When, as is commonly the case, the expected value of the auxiliary variable
depends linearly on the covariates (i.e. Ez;|f = x/f) and £ is a member of a location family of
probability distributions, the model marginalised over the latent variables is guaranteed to be a
GLM with systematic component, 7(x;) = x)f, link function g(Ey,) = —F,'(1 — Ey,)
(or equivalently, inverse link function g~ '(5(x;)) = 1 — Fz(—n(x;))).

The flexibility of a hierarchical specification allows for the development of binary regression
models motivated by the unobserved natural phenomena that give rise to observed binary data.
For example, consider an application in ecology where the data are site-specific observations of
the presence (y; = 1) or absence (y; = 0) of a species of interest, and the covariates are features
of the landscape measured at each site (e.g. vegetation cover and elevation). If we assume that
observations are made with perfect detection (i.e. if a species is present in any abundance at site
i, p; = 1, and similarly, p, = 0 when the species is absent), then we could define presence as an
indicator that the unobserved abundance of the species, z,, is greater than 0. A natural choice for
f7> would often be a family of discrete, non-negative probability mass functions such as the
Poisson distribution with rate parameter 2 = ¢*# (as in Royle & Nichols, 2003).

For the case of Poisson-distributed auxiliary variables, the probability of success is p; =
Pr(z; > O|f) =1 — exp{—e""’/’ } This corresponds to the special case of a GLM with linear
systematic component paired with a complimentary log—log (cloglog) link function. Alterna-
tively, one might specify a negative binomial distribution for z;, in which case the model con-
struction presents a generalisation of the typical GLM through the inclusion of a link
function with an additional unknown parameter.

There are multiple equivalent auxiliary variable specifications of hierarchical models for bi-
nary data. The relationship given by equation (2) has an analogous representation in the auxil-

iary variable framework. Two different auxiliary variables, z,@ and z,(b) with respective CDFs,

F (Zu> and F (Zb), describe the same probability function for y; i

F(Za>(zga):O)ZF(Zb>(Z§b)=0), Vx, € Z. 4)

1.3 Scientific Interpretation

In almost every binary regression analysis, there will be interest in estimating the true prob-
abilities of success for each observed combination of covariates, as well as predicting probabil-
ities for new combinations. In addition, researchers are often interested in the change in
probability of success for small perturbations in the covariates. For these questions, the partic-
ular parameterisation of p is immaterial. That is, provided a sufficiently flexible model for the
probability map has been specified, it does not matter, asymptotically, what particular
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distribution is chosen for the auxiliary variables. Equivalently, given a sufficiently flexible sys-
tematic component, it does not matter what the link function is, as long as it is invertible and
maps the support of Ey; to the real line. Thus, if the questions of scientific interest concern only
the raw probability function, the primary modelling considerations will be that the algorithm for
fitting the model to data is efficient and numerically stable and that there are useful tools avail-
able for assessing goodness of fit (e.g. Conn et al., 2018; Wright et al., 2019).

The probability surface provides predictions for the probabilities of successes for both ob-
served and unobserved combinations of covariates and is often of interest. An underutilised
function in the analyses of binary data is the gradient of the probability function, Vyp(x, 0).
The gradient of the probability function is analogous to the coefficients in traditional linear re-
gression in that it describes how the probability of success changes for small perturbations in
the levels of the covariates. However, unlike in traditional linear regression, the probability
function is a non-linear function of the covariates, and thus, the value of the gradient is not con-
stant but rather depends on the value of x. One useful region of the gradient surface to consider
is the vicinity of the mean of the observed covariates, although features of the gradient surface
near the extremes of the observed covariate values may also be scientifically relevant. For exam-
ple, in actuarial applications, extreme regions of the covariate space might correspond to partic-
ularly high or low risk individuals.

In addition, the parameters @ themselves may offer additional opportunities for scientific
learning. For example, the regression coefficients in a traditional logistic regression model rep-
resent the change in log-odds of the response for an increase of 1 unit in the associated covar-
iate. As the example involving Poisson random variables in the previous section showed, the
auxiliary variables may have a useful parametric interpretation corresponding to some unob-
served natural process. The most useful models are those that are parameterised in a way that
yields useful interpretation and/or admits efficient algorithms for model fitting. For instance,
in the occupancy example mentioned in Section 1.2 that assumes Poisson-distributed auxiliary
variables with mean e*#, f; can be interpreted as the linear effect on log-abundance of increas-

ing x; by 1 unit, holding all other covariates constant.

2 Modifying the Link Function

One common concern about traditional link functions is the potentially restrictive assumption
of symmetry. Symmetric link functions make the implicit assumption that there exists a
sub-space of 2 defined by x'# = 0 around which changes in covariate values, Ax, result in
changes to the probability function of a magnitude that only depends on the length of the vector
Ax. In particular, changes in probability for shifts Ax and —Ax are the same in size but in op-
posite directions (i.e. p(Ax) = 1 — p(—Ax)). Inverse link functions defined through location
family auxiliary variables for which 1 — Fz(—z) = Fz(z) are examples of symmetric link
functions.

There are several useful ways to relax the assumption of symmetry through the link function.
Komori ef al. (2016) defined a new inverse link function of the form

¢ n(x)) = exp{n(x)}+x

= 5
I+ exp{n(x)}+x ©)

that modifies traditional logistic regression. As x > (0 grows, an increasing amount of ‘right’
skewness enters the link function, in that 1 — p(— Ax) < p(Ax). The cloglog link function is
an example of a ‘left’-skewed link function (i.e. 1 — p(— Ax) > p(Ax)), where the degree of
skewness is determined by the systematic component, rather than a free parameter.
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Prentice (1976) proposed a two parameter model for skew link functions that allowed for skew-
ness to occur in either direction and was among the first such generalisations of traditional sym-
metric approaches. Figure 1(c) and 1(g) shows examples of left-skewed and right-skewed
probability curves, respectively. Active development of new methodology for skew link func-
tions is ongoing (e.g. Lemonte & Bazan, 2018).

Introducing additional flexibility through parameters in the link function can indeed result in
better-fitting models, yielding probability functions and gradients thereof that more closely
align with the true data-generating mechanism. However, the skewness parameter used in the
inverse link function of Komori ef al. (2016) can be difficult to interpret directly, and its intro-
duction complicates the log-odds interpretation of the regression coefficients. In addition, the
skewness parameter can be highly confounded with the intercept term, resulting in potentially
unstable estimation algorithms. An alternative method to account for skewness is based on an
auxiliary variable hierarchical model in which the distribution of z;|f is asymmetric. As noted
already, specifying Poisson-distributed auxiliary variables with conditional mean e*# is equiv-
alent to a GLM with a cloglog link, but in this case, the skewness in the probability function has
a parametric interpretation. It arises as a direct result of a data-generating process, which con-
sists of observing whether a count process is positive or zero. In addition, the regression coef-
ficients can be interpreted as the linear effect of each covariate on log-abundance in ecological
applications. When the application does not present a natural choice for the auxiliary variable
distribution, phenomenological models that incorporate asymmetric probability functions can
still be constructed using the hierarchical representation (e.g. Chen et al., 1999; Xing &
Qian, 2017).
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Figure 1. Plots (a) and (b) show two different auxiliary variable distributions that result in the same left-skewed probability
function (c) and probability gradient (d). Plot (a) shows auxiliary variables that vary linearly with the covariate, x, and arise
from an asymmetric Laplace distribution. Points represent realisations of the auxiliary variables, and lines represent the mode
and several quantiles of the auxiliary variables as a function of the covariate. Plot (b) shows normally distributed auxiliary
variables that have a non-linear relationship with the covariate. Plot (e) shows an example of heteroskedastic, normally dis-
tributed auxiliary variables with means that vary linearly with the covariate. Plot (f) shows an equivalent representation of the
right-skewed probability function (g) and gradient (h) using normally distributed, homoskedastic auxiliary variables with
means that are a non-linear function of the covariate
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It is possible, in the pursuit of model flexibility, to take a non-parametric view of the condi-
tional auxiliary variable distribution and allow z;|f to arise from any arbitrary location family of
probability distributions with location x}#. This permits the same level of flexibility as the
non-parametric mean approach of Choudhuri et al. (2007). Care must be taken when introduc-
ing flexibility through the auxiliary variables so that the parameters @ remain identifiable. For
example, as we discuss in Section 2.2, quantile regression approaches for binary data, which at-
tempt to make minimal assumptions about the auxiliary variable conditional distribution (e.g.
Manski, 1985; Benoit & Van den Poel, 2012; Padellini & Rue, 2019), have model parameters
that are only identifiable up to a multiplicative constant.

2.1 Issues with Parameter Ildentifiability

Non-identifiability can sometimes be difficult to anticipate in hierarchically specified models.
Indeed, non-identifiability may have sometimes gone undetected in the literature, potentially
leading to unsubstantiated scientific conclusions.

Specifying a model for binary data in a hierarchical form can provide intuition about the
model and aid in comparing closely related models. However, it is important to note that many
seemingly distinct statistical models based on auxiliary variables are equivalent in that they
yield identical probabilities for the observed binary random variables and are therefore not iden-
tifiable from the data. For example, the top row of Figure 1 shows two different auxiliary vari-
able specifications that satisfy (4) and therefore produce equivalent conditional probabilities at
the data level. In this example involving a single covariate, the auxiliary variables in Figure 1(a)
are asymmetrically distributed around a linearly varying trend, while the auxiliary variables in
Figure 1(b) are symmetrically distributed but have a non-linear relationship with the covariate.

Figure 1(c) and 1(d) shows the resulting equivalent probability function and probability gra-
dient. The bottom row of Figure 1 shows another pair of auxiliary variable specifications that
result in the same right-skewed probability function, with plots arranged analogously. Figure 1(-
e) shows an example of auxiliary variables that are normally distributed and vary linearly and
heteroskedastically with the covariate. Figure 1(f) shows normally distributed, homoskedastic
auxiliary variables that have a non-linear relationship with the covariate.

All four model specifications shown in Figure 1 can also be represented using the three com-
ponents of the GLM framework. In the top row, Figure 1(a) corresponds to a binary regression
model with a linear systematic component and asymmetric inverse link function defined by the
CDF of an asymmetric Laplace distribution. Figure 1(b) corresponds to probit regression with a
non-linear systematic component. In the bottom row, Figure 1(e) corresponds to a linear system-
atic component with an asymmetric inverse link function given by the CDF of a Gaussian dis-
tribution with standard deviation equal to a linear function of the covariate (i.e.

g t(nlx) = @(%)) . Figure 1(f) is another instance of a probit link paired with a
0T 71

non-linear systematic component.

The important conclusion conveyed by these pairs of equivalent models is that asymmetry in
a probability function can arise for a variety of reasons including asymmetry, heteroskedasticity
or non-linearity (or some combination thereof) in the auxiliary variables. Moreover, certain
characteristics of the auxiliary variables such as asymmetry and heteroskedasticity cannot be
identified from the data without making strong assumptions about their relationship with the
covariates.

The link function and systematic component do not operate independently on the probability
function. Indeed, provided sufficient flexibility is permitted for the systematic component, 7(x),
the particular choice of the link function has no impact on the flexibility of the resulting
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probability map p. Thus, without scientific knowledge that provides the basis for modelling as-
sumptions, one approach has been to pair a convenient probit link function and a
non-parametric systematic component (e.g. Choudhuri ef al., 2007).

The examples in Figure 1 illustrate that relaxing assumptions about the conditional distribu-
tion of the auxiliary variables can be equivalent to relaxing assumptions of linearity. As the data
are unable to help the researcher choose between the models associated with the first and second
columns, the only reason to prefer one equivalent model over another would be to accommodate
existing scientific knowledge about the data-generating process. The example of ecological
presence/absence data mentioned in Section 1.2 presents one such case where acknowledging
that the binary data arise because of thresholded observations of a discrete count process moti-
vates the choice of a cloglog link (Poisson auxiliary variable) over a logistic one.

The univariate examples in Figure 1 reveal the interplay between different model compo-
nents, but they are a notable simplification compared with most real applications. As the num-
ber of predictors in the systematic component grows, highly flexible functional spaces become
increasingly impractical to implement, and constraints must be introduced that may make it pos-
sible to identify both the systematic component and the conditional distribution of auxiliary var-
iables or link function. Nevertheless, even though complete non-identifiability may not be a
practical concern, these simple univariate examples show that it will always be important to con-
sider the impacts of assumptions about each model component holistically.

2.2 Quantile Regression for Binary Data

One approach for developing a flexible model for binary data uses quantile regression at the
level of the auxiliary variable in a hierarchical model specification (Benoit & Van den
Poel, 2012). When used in a continuous-response setting, quantile regression relaxes distribu-
tional assumptions about the way the response varies around the linear trend. It is assumed that
each quantile of the response distribution varies linearly with the covariates, but the linear effect
of each covariate is permitted to vary across quantiles. The approach represents an effective way
to model data exhibiting heteroskedastic and/or non-Gaussian residuals (Koenker &
Bassett, 1978; Koenker, 2005). An example of a heteroskedastic conditional random variable
is shown in the bottom left plot of Figure 1. The grey lines in Figure 1 show quantile curves
for a selection of quantile levels. The parameters of interest in binary quantile regression are
the slopes of these grey lines.

A generalised form of quantile regression has been proposed as a model for binary data by
assuming that the responses, y;, are generated from the auxiliary variable model in (3) (Benoit
& Van den Poel, 2012). The quantiles of the auxiliary variables, z;, are assumed to be globally
linear, such that O(z;|#, 7) = x/(z) for all € (0, 1), where Q(z;|7) denotes the 7-th quantile of z;
(Figure 1a and le). Analogous extensions have also been proposed for count-valued responses
(Machado & Santos Silva, 2005; Lee & Neocleous, 2010). In traditional logistic and probit re-
gression, quantiles are implicitly defined by specifying either a logistic or Gaussian density, re-
spectively, and both cases assume homoskedasticity for the auxiliary variables. Quantile
regression for binary data represents an attempt to estimate f(z) for a specific set of z, rather
than define quantile functions through the specification of the density, f,(z;|f). A package
for the R statistical programming language called bayesQR (Benoit & Van den Poel, 2017)
was recently developed that aims to provide practitioners with a tool to fit quantile regression
models to data, including binary-valued data.

Quantile regression coefficients for a fixed quantile, z, are identifiable only up to a multipli-
cative constant when the data are binary (Manski, 1985). However, the meaning of model pa-
rameters in binary quantile regression can easily be misinterpreted and may not provide
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useful scientific learning even when interpreted correctly. We present a geometric perspective to
quantile regression that permits intuitive visualisations for the simplified cases of one or two
covariates.

2.2.1 Parameter identifiability: single predictor

Consider the probability function for a hypothetical binary response that depends on an inter-
cept and a single covariate, x, shown in Figure 2(c), such that #(z) = (f,(z), f,(z))". A selection
of nine quantiles are depicted as points along the curve. By definition, the value of x at which
the probability function achieves a particular quantile, 7, corresponds to the value of x for which
O(zlx, By, 1, 1 — 7) = 0. That is, the proportion of the probability mass of the conditional
random variable z|x that occurs in the region z > 0 is 7. Thus, a particular probability function
evaluated at a set of quantiles corresponds to an equal-sized set of points in the xz-plane at
the locations where the quantile curves Q(zlx, By, f1, 1 — 7) intersect the x-axis. Figure 2(a)
and 2(b) shows two different possible distributions for z|x that both have quantile functions
intersecting the x-axis at the same locations, and both satisfy global linearity. Thus, the quantile
regression parameters are not identifiable from any amount of binary data.

The auxiliary variables in Figure 2(a) exhibit heterogeneity in the covariate effects across
quantiles, while the auxiliary variables in Figure 2(b) do not. Hence, even under the global lin-
earity assumption, it is not possible to identify the parameters #(z) from a binary response. It is
not even possible to determine whether, under a global linearity assumption, the auxiliary var-
iables exhibit heteroskedasticity of any kind. Geometrically, this is equivalent to stating that one
cannot estimate the slope of the lines in the xz-plane; one can only estimate where they intersect
the x-axis. For each fixed value of 7, the non-identifiability of the slope is exactly the limitation
pointed out in Manski (1985). The set of functions defined by z = kf,(7)+kp, (7)x for k € R
—Bo(7)

Bi(z)

The estimation procedure in bayesQR appears to provide stable estimates of #(7) because it
provides approximate inference about quantile-level effects by fitting a suite of sub-models to
the data. In each sub-model, the auxiliary variables are assumed to arise from an asymmetric
Laplace distribution with unit variance and known skewness parameter corresponding to one
particular quantile of interest. Although all sub-models are likely misspecified, the procedure
leads to valid posterior distributions for the covariate effects for continuous-response data in
the sense that, for fixed f(z), posterior distributions constructed using this procedure converge

coincides with the set of lines that pass through a common x-intercept,
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Figure 2. Projection of quantiles onto intercepts of quantile functions for z/x. Plots (a) and (b) show realisations from two
different auxiliary variable distributions that give rise to equivalent probability functions (c) and probability function gradi-
ents (d)
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asymptotically to point masses at the fixed levels (Sriram et al., 2013; Yang et al., 2016). How-
ever, posterior validity has not been established for the case of binary data.

By introducing constraints on the vector f(z), such as [|f(7)] |§ =1 as suggested by
Manski (1985), it is possible to identify certain functions of the quantile regression coefficients.
The second plot in Figure 2 corresponds to a constraint that 3, (z) = 1 for all z. After a constraint
is enforced to ensure identifiability, it is possible to use quantile regression methods to make in-
ference about the probability function (Kordas, 2006), although Bayesian methods that provide
valid estimates of uncertainty have not yet been developed.

2.2.2  Parameter identifiability: multiple predictors

Typical regression analyses consider several covariates of interest. Figure 3 shows how
quantile surfaces for an auxiliary variable exhibiting global linearity with respect to two covar-
iates (a) results in a particular probability surface (b) and corresponding gradient surface (c).
The locations where the quantile functions intersect the two covariate axes are uniquely deter-
mined by the probability function, as they were for the univariate case (Figure 2). However,
the slopes of the planes in the left plot are not fully identified without further constraints.

For the case of multiple predictors, a potentially useful parameter identifiable from the data is
the relative effect of factor j given by S/ (z) = B,(t)/|B_o(7)|, where |f_,(z)| is a suitable vector
norm of all effects besides the intercept. This quantity can be interpreted as the contribution of
the j-th covariate on the 7-th quantile of the auxiliary variable relative to the total contributions
of all covariates together. Thus, 87 (71) < p;(r2) means that the relative contribution of the j-th
factor is greater for quantile 7, than for quantile 7.

However, inequality between normalised effects tells us nothing about the change in the mag-
nitude of an effect across different quantiles; it may be that f(z;) > f(7,). Commonly produced
‘forest plots’ that show how the value of B,(z) varies with 7 are nonsensical in the context of a
binary response because they present non-identifiable quantities. One could, in principle, exam-
ine ,b’;‘(r) for a range of quantiles, 7. However, the scientific learning afforded by measuring the
relative contribution of a particular linear effect across quantiles is unclear. Lacking a coherent
interpretive motivation, quantile regression for binary data reduces to another method like
non-parametric probit regression that permits a high degree of flexibility in the shape of the
probability surface. Other methods exist for estimating probability functions that offer

(@) (b) (c)

m

Figure 3. Projection of quantiles onto intercepts of quantile functions for z. Plot (a) shows an example of auxiliary variables
exhibiting global linearity that give rise to the probability surface in (b) and probability surface gradient, the magnitude of
which is shown in (c)
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equivalent levels of flexibility yet do not rely on approximate inferential procedures (e.g.
Wood, 2017). The necessity of quantile regression methods for binary data therefore remains
to be established.

3 Modifying the Random Component

A third way to introduce flexibility in the probability surface is to relax assumptions about the
third component of a traditional GLM: the random component. For binary data, the marginal
distribution for the observations, y;, is Bernoulli. However, the tacit assumption made in tradi-
tional GLMs that the distributions of y; are conditionally independent can be relaxed through
the introduction of random effects in the systematic component. For example, a simple
extension of the probit regression model might allow for a random intercept in the
systematic component, indexed by some underlying group structure, written as
yilB, & ~ Bemn(yi|p;(xi, B, (i)); @' (p;) = xIB + i & ~ N(&i|m(i), ag), where m(i) is the in-
tercept associated with the group to which datum i belongs, and the intercept in the systematic
component, Sy, is fixed at 0 to ensure parameter identifiability. Researchers are often
uninterested in ¢;. Including the random intercept is performed to ensure that any group-level
effects that may be confounded with the covariates of interest are accounted for so that valid
uncertainty estimates are produced for f (see Larsen et al., 2000, for a discussion of parameter
interpretation in the analogous logistic model with random effects). A hierarchical formulation
of this so-called generalised linear mixed model (GLMM) is given by y|z; =
L > 05 zilB, & ~ N(zxip + &, 1); & ~ N(Gifm(i), Ué)

Conditioned on the group random effect, { = ({7, ..., { ,,)/, the data are independent as be-
fore, but integrating out the random effects induces positive dependence between random var-
iables y; and y; when i and j belong to the same group (i.e. m(i) = m(j)). Thus, the random
component has been modified in its joint structure, although the marginal distribution remains
Bernoulli.

Random effects associated with other indices such as spatio-temporal information induce de-
pendence for proximate responses. In Section 4, we demonstrate how a spatial random effect
may be used to account for residual spatial structure in the occupancy pattern of European
red squirrels (S. vulgaris) in Switzerland. In the example involving random intercepts,
identifiability is achievable if the number of groups is much less than the number of observa-
tions. For spatial random effects, an analogous requirement is that the range of spatial depen-
dence not be too short relative to the distances between spatial locations.

4 Application to Occupancy Status of Red Squirrels

We demonstrate how the concepts presented earlier on binary regression modelling may be
used in practice with an application to the distribution of the European red squirrel in
Switzerland. The data in this example are binary responses indicating whether any red squirrels
were observed during visit j to site 7, and our goal was to develop a model for the occurrence of
this species that allows us to infer the relationship between occurrence and relevant landscape
covariates, as well as predict the occupancy status of new sites. The data were collected as part
of the Swiss breeding bird survey (Monitoring Héufige Brutvogel, MHB Schmid ef al., 2004)
carried out by the Swiss Ornithological Institute. We developed two new models for occupancy
that account for imperfect detection of the species and are parameterised by interpretable quan-
tities related to species abundance. We compared the predictive performance of our proposed
models with a baseline model that assumes constant occurrence and detection rates across sites
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and visits, in addition to a reanalysis based on the approach taken in Kéry & Royle (2015). All
model fitting was performed using the package NIMBLE (de Valpine et al., 2017) for the R sta-
tistical programming environment.

The 2007 data set is composed of detections/non-detections (1/0) of the red squirrel in two
hundred sixty-five 1-km? survey quadrats in Switzerland. Each site was visited on two or three
separate occasions for a total of 747 observations, 194 of which were detections.
Landscape-level predictors hypothesised to covary with occurrence probability (') are elevation
and per cent forest cover (Figure 1 of Supporting Information A). Predictors measured on each
visit and hypothesised to covary with the detectability of red squirrels (%) are the date and du-
ration of the observation procedure, which ranged from 13 April to 27 July and 1.5 to 9.5 h,
respectively.

Setting aside the issue of detectability, in the presence/absence setting, a logistically or nor-
mally distributed auxiliary variable may not correspond to any observable natural phenomenon.
However, as suggested in Section 1.2, a non-negative, integer-valued auxiliary variable could be
interpreted as the true number of individuals present at a given site (first proposed in Royle &
Nichols, 2003). If we let z; denote such a random variable for site i, then the probability of ob-
serving an individual under a scenario of perfect detection would be Pr(z; > 0). In two of the
models we consider in this section, z; is modelled as a Poisson-distributed random variable with
EZ,‘|ﬂ = i(Xl‘) = €x/iﬂ.

To address the reality of imperfect detection, the probability of observing the study species at
site i on occasion j is typically decomposed into the probability that the site is truly occupied,
often denoted y;, and the conditional probability that a species is detected, given the site is oc-
cupied, which we denote by 7;;. Allowing for imperfect detection modifies the model for the data
such that Pr(y; = 1|y;, r;;) = y,r;;. A hierarchical formulation for such an imperfect detection
is given byyil-|z,-7 wj =1 > oly, > ozilB ~ f7(zilxi, B), andugla ~ [ (uw;i|wy, @), where uy; is a
latent variable controlling the detection process. The occupancy probability y; is implicitly de-
fined as the probability that z; is positive, and the conditional probability of detection, r;;, is the
probability that u;; is positive. A large body of literature has focused specifically on the devel-
opment of statistical methods for occupancy data (e.g. MacKenzie et al., 2002, 2018), with em-
phasis on capturing temporal dynamics (e.g. Buckland & Elston, 1993; MacKenzie et al., 2003;
Royle & Kéry, 2007) and residual spatial dependence (e.g. Buckland & Elston, 1993; Hooten
et al., 2003; Johnson et al., 2013).

There is clear motivation for specifying a discrete, non-negative distribution for z; such as the
Poisson distribution. However, a natural motivation for the specification of f;, is more elusive. In
the absence of a naturally arising distribution for f;,, we specified a standard normal distribution
with mean W;ja, where w;; is a vector of covariates related to detectability at site 7 on visit j (as in
Dorazio & Rodriguez, 2012).

We considered a total of four model formulations outlined in the succeeding text. Prior spec-
ifications and implementation details, including code to reproduce all analyses, are available in
Supporting Information A and B. The most basic (‘naive’) model we considered assumes that
occupancy is constant across all visits and the probabilities of occupancy and detection
(given a site is occupied) are constant in space such that y; ~ Bern(y;|rz;), z ~ Bern(y),
r ~ Beta(r|a,, b,) , and y ~ Beta(yla,, b,) . A second model extends traditional
logistic regression for the case of occupancy data with imperfect detection as
described by Kéry & Royle (2015): y;|z;, uj = 1, = o1y, > 0, zi|f ~ Logistic(z|xjf, 1), and
ujla ~ Logistic(u;|wje, 1). A third model assumes Poisson-distributed auxiliary variables re-
lated to occupancy, and normally distributed auxiliary variables for detection:
z|B ~ Pois(zi|A(x;) = e”), and wyla ~ N(uy|wja, 1). Finally, a fourth model extends the
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340 SCHARF ET AL.

Poisson model by introducing a spatial random effect: z;|, ; ~ Pois(z;|A(x;) = €& <), The
spatial random effect,{ = ({4, ...C ,,)/, is modelled as a Gaussian random vector with condition-
ally Markovian dependence structure. For the purposes of illustration, we considered Gaussian
Markov random fields with a known neighbourhood structure (Rue & Held, 2005).

We specified an intrinsic conditional autoregressive distribution for ¢ (Besag &
Kooperberg, 1995; Ver Hoef ef al., 2018), such that the precision matrix is defined as Q =
72(D — A), where A is a binary adjacency matrix representing a known neighbourhood struc-
ture and D is diagonal with entries equal to the sum of the neighbours for each site (i.e. the row
sums of A). We defined A as the adjacency matrix of sites in the unique Delaunay triangulation
of the observation locations. The spatial random effect could be introduced at one of several lo-
cations in the hierarchical structure, but the most natural place is at the same level as the occu-
pancy covariates (Johnson ef al., 2013; Schmidt ef al., 2015). Introducing the random effect in
this way is convenient because (; has support given by the entire real line, and e/ may be
interpreted as the extra multiplicative effect on the expected abundance at site i due to unob-
served covariates.

For each of the Kéry—Royle (KR), Poisson (P) and spatial Poisson (SP) models, we consid-
ered two possible collections of covariates for both 2" and %', shown in Table 1. The first col-
lection (L) includes multiple first-order effects of landscape covariates on occupancy (z;) and
detection (u;;). The second collection (Q) was selected based on the analysis of Kéry &
Royle (2015) and includes all the first-order effects as well as multiple quadratic effects and in-
teractions. Matching the proposed model structures with the two collections of covariates results
in seven predictive models for the occurrence of red squirrels: the naive model (N), two
Kéry—Royle models (KRL and KRQ), two Poisson models (PL and PQ) and two spatial Poisson
models (SPL and SPQ).

Before discussing the results of each proposed model/covariate combination, we briefly sum-
marise what practical and scientific considerations might be useful to select from among these
possibilities, setting aside the naive model as an overly simplistic approach used only as a base-
line against which we compare the performance of more plausible models. The KR approach
represents the most traditional approach for analysing data of this type. Points in favour of
the KR approach are the existence of vetted model fitting software and the ability to include
non-linear effects of covariates on both occupancy and detection probabilities, yielding flexible
probability functions for the data. The primary limitations of the KR models are that neither the
auxiliary variables nor the effects parameters, f, are directly interpretable. If the primary scien-
tific goals include only prediction and estimation of the probability functions for occupancy and
detection, then the KR approach represents a valuable and appropriate statistical tool.

Table 1. Collections of covariates.

Occupancy () Detection (W)

Covariate L 0 Covariate L (0]
Intercept v v Intercept v v
Elevation v v Date v v
Forest v v Duration v v
Elevation x Forest v Duration v
Elevation® v

Forest v

Elevation® x Forest v

Elevation x Forest v
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Flexible, Identifiable and Interpretable 341

The Poisson-based approaches provide the same level of flexibility for the occupancy and de-
tection probability functions, with the additional benefit of interpretable auxiliary variables.
Using one of these approaches, one can obtain an estimate with uncertainty of the abundance
of red squirrels at any of the visited sites or predict abundance at a new site. Such abundance
estimates can depend strongly on the particular non-negative discrete-valued distribution spec-
ified for z;| B, (sensu Barker et al., 2018), but nevertheless provide preliminary estimates useful,
for example, in developing future study designs. The spatial Poisson approach provides even
greater flexibility for the probability functions of occupancy and detection and allows for the
possibility that important landscape-level covariates may be missing from the analysis.

4.1 Results

Figure 4(a)-4(d) shows the marginal probability curves for occupancy by elevation (a) and
per cent forest cover (b) for all seven model—covariate combinations, and the marginal probabil-
ity curves for detection as a functions of visit date (c) and duration (d). The overall shapes of the
curves are consistent across the six non-naive models, with the possible exception of detectabil-
ity as a function of survey duration for which models incorporating quadratic covariates show a
decreasing effect of survey duration on detectability above 6 h, albeit with a considerable in-
crease in uncertainty compared with the linear covariates. Figure 4(e)—4(h) shows the marginal
probability gradients, arranged analogously to Figure 4(a)-4(d).

The Poisson-based approaches allow for abundance estimates to be made at both the sur-
veyed sites and new locations. Figure 5 shows the posterior median of the abundance intensity,
J, across Switzerland at a resolution of 1 km?. A notable difference between the linear and
quadratic covariate combinations is smoothness of the predicted abundance surface.

The spatial random effect in the SPL and SPQ models provides insight into where the mea-
sured covariates alone may not be able to adequately explain variability in the data. Figure 6
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Figure 4. Top row: marginal probability curves for occupancy as a function of elevation (a) and per cent forest cover (b), and
conditional probability of detection curves as a function of survey date (c) and survey duration (d). Solid lines represent
pointwise posterior medians from each model, and dotted lines give pointwise equal-tailed 95% credible intervals. Bottom
row (e)-(h): derivatives of marginal probability curves in top row
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Figure 6. Posterior summary of spatial random effect, ¢, for the SPL and SPQ models

shows three quantiles (0.025, 0.5 and 0.975) summarising the posterior distribution of the spa-
tial random effect, {, at each surveyed location. The quantiles for SPQ (Figure 6, bottom row)
suggest that something about the western part of Switzerland, not captured by the covariates, is
associated with a reduction in occupancy.

To investigate goodness of fit, we made partial residual box plots aggregated into a discrete
number of bins for each covariate (Figure 4 of Supporting Information A). In general, models
using only the linear predictors showed some systematic over-prediction of occupancy for mod-
erately low forest cover.

We investigated the predictive performance of each of the seven models using a K-fold
cross-validation approach (Section 3 of Supporting Information A). The only clearly inferior
model was the naive one. When several models are indistinguishable based on their predictive
score, model selection should be performed using all available scientific information relevant to
the specific study. We advocate for selecting models whose mechanisms best align with prior
knowledge (see also Ver Hoef & Boveng, 2015, for arguments in favour of selecting interpret-
able models even when predictive scores are worse).
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5 Discussion

We showed how new and existing binary regression models can be constructed using auxil-
iary variables. Hierarchical binary regression models specified using auxiliary variables can fa-
cilitate interpretable parameterisations when the auxiliary variables correspond to a real but
unobserved natural process that gives rise to the observed binary response. Because binary data
can often be understood as summaries of natural processes through thresholding or censoring,
interpretable auxiliary variables are often intuitive to define.

A necessary step in the development of any new statistical methodology, establishing param-
eter identifiability in a proposed binary regression model, is of critical importance and not al-
ways straightforward. In the pursuit of flexible models for data that require minimal
assumptions, it is possible to inadvertently introduce non-identifiability issues. Approximate
model fitting procedures can sometimes mask issues where fully Bayesian inference might be
more revealing. Unfortunately, exact inferential procedures are not always available.

Generalisations to traditional binary regression models can be usefully characterised by the
ways in which modifications are made to the three components of GLMs (random component,
systematic component and link function). Through an application to the occurrence of red squir-
rels in Switzerland, we demonstrated how to construct several potential hierarchical models for
binary data. The occupancy status of an areal unit can be thought of as a thresholded observa-
tion of abundance at 0, which motivated the specification of a Poisson-distributed auxiliary var-
iable corresponding to site abundance. This auxiliary variable distribution implied a
modification of the traditional symmetric link function to the complementary log—log link func-
tion. We also proposed a further generalisation of this latent abundance model by including a
spatial random effect, which implied a modification of the traditional assumption of conditional
independence in the random component.

One avenue that could yield more reliable quantile regression inference for binary data would
be to extend one of the more holistic Bayesian approaches of (Kottas & Krnjaji¢, 2009; Taddy
& Kottas, 2010; Reich ez al., 2011; Tokdar & Kadaney, 2012; Yang & Tokdar, 2017) to the case
of binary data. Although many of the same identifiability issues that appear in existing quantile
regression approaches for binary data would remain, these alternative methods do not rely on
approximate inferential procedures. Fully Bayesian inference would aid in the detection of
identifiability issues and obviate the need for theoretical guarantees about approximation error.
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