
Optimizing batting order for Little League

Baseball using Bayesian statistics and cellular

automation

Perry Williams

April 15, 2022

Contents

1 Methods 1
1.1 Statistical Model . 1
1.2 Cellular Automatation - simulating a little league game . . 4
1.3 Optimizing Batting Order 9

1 Methods

1.1 Statistical Model

I divided potential batting outcomes of a plate appearance into five cate-
gories. They were

yi =

strikeouti
force outi

singlei
doublei
triplei

 , (1)

where each category in the vector represents the totals of each outcome for
player i = 1, . . . , n for the season. These are the 5 most common outcomes
that occur and each plate appearance can be classified into one of these
categories. There are usually no home runs in the league and team to
which I am applying these methods. However, the model could easily be
extended to account for additional batting outcomes if sufficient data exist
to estimate their probabilities. To estimate the probability of each outcome
for each batter, I modeled the data as

yi ∼ Multinomial(pi, Ni) (2)

pi ∼ Dirichlet(αi,K)

I estimated the unknown parameter vector pi (the probability of each bat-
ting outcome) for each player in a Bayesian framework with a custom
MCMC algorithm. The vector αi is the hyper-parameter for the prior
probabilities of each player. I set these hyper-parameters using previous
year batting data when available, or observations during practice when the
previous year data were not available. The model shown in equation 2 re-
sults in a conjugate Dirichlet posterior distribution which is easy to sample
from. An example of R script to fit the model is shown below

library(data.table)

library(DirichletReg)

Loading required package: Formula

1

library(gtools)

library(readxl)

###

Set Working Directory

###

setwd("~/Dropbox/Baseball/2022_JACK_FARM")

###

Load Batting Data

###

batting=read_xlsx("BattingData.xlsx",sheet="BattingData")

game.results=read_xlsx("BattingData.xlsx",sheet="GameResults")

dt.tmp=data.table(batting)

###

Remove players who missed games

###

ind=!is.na(dt.tmp$AB)

dt=dt.tmp[ind,]

ID=dt[,sum(AB,na.rm=TRUE),by=playerID]£playerID

hide identities of batters

ID=1:11

###

At bats (AB), putouts (PO), strikeouts (K), singles (S)

doubles (D), triples (Tr)

###

AB=dt[,sum(AB,na.rm=TRUE),by=playerID]$V1

K=dt[,sum(SO,na.rm=TRUE),by=playerID]$V1

S=dt[,sum(X1B,na.rm=TRUE),by=playerID]$V1

D=dt[,sum(X2B,na.rm=TRUE),by=playerID]$V1

Tr=dt[,sum(X3B,na.rm=TRUE),by=playerID]$V1

PO=AB-K-S-D-Tr

###

Create respons variable y

###

y=cbind(K,PO,S,D,Tr)

###

Required data format

###

y

K PO S D Tr

[1,] 4 1 6 1 0

[2,] 0 0 9 1 2

[3,] 2 1 9 0 0

[4,] 5 1 2 0 0

[5,] 0 1 11 0 0

[6,] 0 3 9 0 0

[7,] 10 1 1 0 0

[8,] 4 0 8 0 0

2

[9,] 9 2 1 0 0

[10,] 6 2 0 0 0

[11,] 4 0 7 1 0

###

Estimate probabilities of each outcome for each player

###

###

MCMC settings

###

n.iter=50000

###

Prior information

###

K=ncol(y)

alpha=matrix(

c(0.25,0.05,0.62,0.05,.03, # player 1

0.15,0.05,0.65,0.1,.05, # player 2

0.1,0.05,0.79,0.05,.01, # player 3

0.64,0.06,0.25,0.04,.01, # player 4

0.2,0.05,0.69,0.05,.01, # player 5

0.22,0.1,0.57,0.08,.03, # player 6

0.83,0.05,0.1,0.01,.01, # player 7

0.45,0.05,0.4,0.08,.02, # player 8

0.83,0.05,0.1,0.01,.01, # player 9

0.83,0.05,0.1,0.01,.01, # player 10

0.18230, 0.04742, 0.76430, 0.00294, 0.00304)

player 11: strong priors from 2021 batting data

,length(ID),byrow=TRUE)

###

Book-keeping

###

p.save=array(data=NA,dim=c(n.iter,nrow(alpha),K))

###

MCMC

###

for(k in 1:n.iter){
p.save[k,,]=DirichletReg::rdirichlet(length(ID),alpha+y)

}

We can plot the probabilities of each outcome for each player

###

###

###

par(mfrow=c(4,3),mar=c(4,2,1,1))

for(j in 1:11){
plot(density(p.save[,j,1]),main=paste("Player ", j),

xlim=c(0,1),ylim=c(0,20),lwd=2,xlab="")

for(i in 2:5){
lines(density(p.save[,j,i],bw=.01),,col=i,lwd=2)

3

}
}
legend(.5,20,c("K","PO","1b","2b","3b"),lty=1 ,col=1:5,lwd=2)

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

Player 1

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

Player 2

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

Player 3

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

Player 4

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

Player 5

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

Player 6

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

Player 7

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

Player 8

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

Player 9
D

en
si

ty

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

Player 10

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

Player 11

D
en

si
ty

K
PO
1b
2b
3b

1.2 Cellular Automatation - simulating a little league
game

Cellular automation consists of a regular grid of cells, each with a finite
number of states. Each cell has a neighborhood defined relative to each
cell. Each cell has an initial state at time t = 0. A new generation is
crated according to fixed rules that determine the new state of each cell
with respect to its state and neighboring states.

Baseball offense can be approximated using a simple cellular automa-
tion. There are four grid cells representing first base, second base, third
base, and home plate. Home plate and second base are neighbors of third
base, third base and first base are neighbors of second base, and so on. The
state of of each grid cell is determined by a set of fixed rules. Many little
leagues have a set of rules that vary among organizations. For example,
the league described in the example I provide has 6 innings, 11 players per
team who all bat each game, and a maximum of 5 runs per inning.

The rules the cellular automation can be described with variations of
the following pseudo-code:

1. set inning = 1 and batter = 0

2. While inning < 6 do:

(a) set first base = 0, second base = 0, third base = 0, and outs =
0.

(b) While outs < 3 and runs < 5 do:

i. batter = batter + 1, if batter = 12, batter = 1,

4

ii. draw a random yi from equation 1 from the posterior pre-
dictive distribution of the model.

iii. if y1,i = 1 do:

• batter strikes out and outs = outs + 1, go back to ii.

else go to iv.

iv. if y2,i = 1 do:

• batter is forced out at first, outs = outs + 1,

• if third = 1, runs = runs + 1

• if second = 1, third = 1

• if first = 1, second = 1

• first = 0

• go back to ii.

else, go to v.

v. if y3,i = 1

• batter hits single

• if third = 1, runs = runs + 1

• if second = 1, third = 1

• if first = 1, second = 1

• first = 1

• go back to ii

else, go to vi.

vi. if y4,i = 1

• batter hits double

• if third = 1, runs = runs + 1

• if second = 1, runs = runs + 1

• if first = 1, third = 1

• first = 0

• second = 1

• go back to ii,

else, go to vii.

vii. if y5,i = 1

• batter hits triple

• if third = 1, runs = runs + 1

• if second = 1, runs = runs + 1

• if first = 1, runs = runs + 1

• first = 0

• second = 0

• third = 1

• go back to ii

While there are many more than 5 outcomes that could occur during each
plate appearance, the five outcomes described in these rules are the most
common. For example, a force out at first base is much more common than
a force out at second or third and restricting force outs to occur at first
greatly simplifies model complexity, reducing the number of parameters we
need to estimate.

After running the cellular automation for one value sampled from the
posterior predictive distribution [ynew|y] we can record how many runs were
scored as a derived parameter. We can then repeat the cellular automation
for each k = 1, . . . ,K MCMC sample from [ynew|y] to estimate the prob-
ability of scoring any number of runs. Example R code of how to run the
cellular automation is shown below

5

###

Function to simulate game using the rules describe above

###

simulate.game=function(l,n.iter,perms,p.save){
tot.innings=6

tok=Sys.time()

outs=0;first=0;second=0;third=0

runs=0;i=1;inning=1;batter=1;j=1;k=1

ab.save=array(data=0,dim=c(5,ncol(perms),tot.innings))

ab.l=list();q.save=0

runs.save=matrix(NA,tot.innings,n.iter)

for(k in 1:n.iter){
ab.save=array(data=0,dim=c(5,ncol(perms),tot.innings))

for(inning in 1:tot.innings){
while(outs<3&runs<5){

###

###

ab=rmultinom(1,size=1,prob=p.save[k,perms[l,batter],])

##

##

ab.save[,batter,inning]=ab

if(ab[1]==1) outs=outs+1

if(ab[2]==1){
outs=outs+1

if(third==1&outs<3) runs=runs+1

if(second==1) third=1

if(first==1) second=1

first=0

}
if(ab[3]==1){
if(third==1) runs=runs+1

if(second==1) third=1

if(first==1) second=1

first=1

}
if(ab[4]==1){
if(third==1) runs=runs+1

if(second==1) runs=runs+1

if(first==1) third=1

second=1

first=0

}
if(ab[5]==1){
if(third==1) runs=runs+1

if(second==1) runs=runs+1

if(first==1) runs=runs+1

third=1

second=0

first=0

}
i=i+1

#print(batter)

batter=batter+1

if(batter==(ncol(perms)+1)) batter=1

6

}
i=1

runs.save[inning,k]=runs

runs=0

inning=inning+1

outs=0

first=0

second=0

third=0

}
ab.l[[k]]=ab.save

}

tot.runs=apply(runs.save,2,sum)

hist(tot.runs)

q.save=sum(tot.runs)/n.iter

#}
tik=Sys.time()

output=matrix(NA,,n.iter)

output[[1]]=tik-tok

output[[2]]=q.save

output[1,]=tot.runs

output[[4]]=runs.save

output[[5]]=ab.l

return(output)

}

###

Execute the function for one lineup

with order: player 1, player 2,...,player 11

###

perms=matrix(1:11,1,11)

output=simulate.game(1,n.iter,perms,p.save)

total.runs=output

hist(total.runs,main="Probability of runs",xlim=c(0,30),

breaks=30)

abline(v=mean(total.runs),col=2,lwd=4)

7

Probability of runs

total.runs

F
re

qu
en

cy

0 5 10 15 20 25 30

0
10

00
20

00
30

00
40

00

(mean1=mean(total.runs))

[1] 8.6

###

How does reversing the lineup affect the probability

of runs?

with order: player 11, player 10,...,player 1

###

perms=matrix(11:1,1,11)

output=simulate.game(1,n.iter,perms,p.save)

total.runs=output

hist(total.runs,main="Probability of runs",xlim=c(0,30),

breaks=30)

abline(v=mean(total.runs),col=2,lwd=4)

8

Probability of runs

total.runs

F
re

qu
en

cy

0 5 10 15 20 25 30

0
10

00
20

00
30

00
40

00
50

00

(mean2=mean(total.runs))

[1] 8.58

We see that the mean of the posterior distribution for the number of
runs for the batting order player 1, player 2, ..., player 3 is 8.598 and
the mean of the posterior distribution for the total number of runs or the
batting order player 11, player 10,...,player 1 is 8.598. Changing the order
can give us different probabilities associated with the number of runs we
expect (even if they are the same for these two examples). Can we find a
batting order that maximizes the expected number of total runs?

1.3 Optimizing Batting Order

To optimize the batting order we will complete the above calculations for a
large number of permutations of the batting order. This is computationally
expensive and I will leverage parallel processing. Here is some example R
code to do this task

###

Load parallel processing package

###

library(doSNOW)

Loading required package: foreach

Loading required package: iterators

Loading required package: snow

###

Permutate all possible batting orders

(slow so I saved the results after doing it once)

###

9

perms=permutations(n=length(ID),

r=length(ID),

v=1:length(ID),

repeats.allowed=F)

save(perms,file=paste0("~/Dropbox/Baseball/",

"2022_JACK_FARM/BayesianAnalysis/",

"perms.RData"))

load(paste0("~/Dropbox/Baseball/2022_JACK_FARM/",

"BayesianAnalysis/perms.RData"))

nrow(perms) # 39.9 million ways to make the lineup

[1] 39916800

###

How many lineups to evaluate (can't do all 39.9 million)

###

No.lineups=100 # about 4.6 minutes to complete

###

setup parallel backend to use many processors

###

cl <- makeCluster(7) # 7 cores for parallel

registerDoSNOW(cl)

###

Optional progress bar so we know where we're at

in the computation

###

pb=txtProgressBar(max=No.lineups,style=3)

progress=function(n)setTxtProgressBar(pb,n)

opts=list(progress=progress)

###

randomly sample lineups from 1,...,39.9 million

###

samp=sort(sample(1:dim(perms)[1],No.lineups))

###

Start calculations, keeping track of time

###

tok=Sys.time()

parallel.out <- foreach(l=samp,

.combine=rbind,

.options.snow=opts) %dopar% {
tempMatrix =

simulate.game(l,n.iter,perms

,p.save)

return(tempMatrix)

}

parallel.out <- foreach(l=samp,

.combine=rbind) %dopar% {
tempMatrix =

simulate.game(l,n.iter,perms,

10

p.save)

return(tempMatrix)

}

tik=Sys.time()

tik-tok

Time difference of 4.42 mins

###

close backend processors

###

close(pb)

stopCluster(cl)

###

Calculate the mean of the posterior distribution

of number of runs for each batting order. Some

batting orders are better than others

###

mean.runs=apply(parallel.out,1,mean)

hist(mean.runs)

Histogram of mean.runs

mean.runs

F
re

qu
en

cy

7.5 8.0 8.5 9.0 9.5

0
5

10
15

20
25

###

What is the best lineup?

###

best.designs=which(mean.runs==max(mean.runs))

(lineup=ID[perms[best.designs,]])

11

[1] 1 2 3 4 5 6 8 11 7 10 9

runs.ppd=parallel.out[best.designs,]

###

what are the mean number of runs to expect

###

mean(runs.ppd)

[1] 9.45

###

Credible intervals

###

quantile(runs.ppd,c(0.025,0.975))

2.5% 97.5%

2 17

The (locally) optimal batting order is:
player 1
player 2
player 3
player 4
player 5
player 6
player 8
player 11
player 7
player 10
player 9

Computation time for 100 lineups is approximately 5 minutes on my
machine. Computation time for 5000 lineups is approximately 1.9 hours to
complete. Parents, please let me know if your player won’t be able to make
it to the game 2 hours prior to game time ;).

12

	Methods
	Statistical Model
	Cellular Automatation - simulating a little league game
	Optimizing Batting Order

