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Abstract

Choices in scientific research and management require balancing multiple, often compet-
ing objectives. Multiple-objective optimization (MOO) provides a unifying framework for
solving multiple objective problems. Model selection is a critical component to scientific
inference and prediction and concerns balancing the competing objectives of model fit and
model complexity. The tradeoff between model fit and model complexity provides a basis for
describing the model-selection problem within the MOO framework. We discuss MOO and
two strategies for solving the MOO problem; modeling preferences pre-optimization and
post-optimization. Most model selection methods are consistent with solving MOO prob-
lems via specification of preferences pre-optimization. We reconcile these methods within
the MOO framework. We also consider model selection using post-optimization specifica-
tion of preferences. That is, by first identifying Pareto optimal solutions, and then selecting
among them. We demonstrate concepts with an ecological application of model selection
using avian species richness data in the continental United States.

Keywords: competing models, decision theory, model selection, multiple objectives, Pareto fron-
tier, optimal solution
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1 INTRODUCTION

The goal of modeling scientific processes varies from identifying the important factors driv-

ing a system, to robust prediction into the future or across space. Multiple competing models

are considered in most cases, each model based on hypotheses of spatial or temporal structure

in parameters, heterogeneity among individuals within a population, or candidates for covari-

ates influencing the process of interest. Ultimately, one model from the candidate models, or

a composition of candidate models, is selected for inference or prediction. Model selection is

one of the most common problems in scientific research, and numerous model-selection meth-

ods are available (e.g., Akaike, 1973; Mallows, 1973; Schwarz et al., 1978; Gelfand and Ghosh,

1998; Burnham and Anderson, 2002; Hooten and Hobbs, 2015). Each model-selection method

represents an approach to balancing the bias due to missing important factors (model fit) with

imprecision due to overfitting the data (model complexity). Each method represents a different a

priori weighting of the relative importance of model fit and model complexity. While guidelines

exist, there is no consensus among statisticians on best methods for this model selection process

(Hooten and Hobbs, 2015).

Multi-objective optimization (MOO) is a formal decision-theoretic framework for optimizing

problems with more than one objective (Marler and Arora, 2004; Williams, 2016; Williams and

Kendall, 2017). MOO is commonly used in engineering, economics, and other fields for which

decisions must balance trade-offs between � 2 competing objectives (Marler and Arora, 2004).

When a decision maker has competing objectives, a solution that is optimal for one objective

might not be optimal for the other objective and a single solution that optimizes multiple objec-

tives does not exist. With competing objectives there exists many (possibly infinite) solutions

that might be considered “optimal” (i.e., Pareto optimal; Williams and Kendall, 2017). However,

in most decision contexts, a decision maker can only make one choice (e.g., which model to use

to predict into the future?). To choose among solutions, a decision maker must include their pref-

erences among objectives to identify a final solution. MOO provides a mathematical framework

for quantifying preferences for examining multi-objective problems.
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The MOO framework is described generally as

f(✓⇤) = optimum✓f(✓), (1)

where f(✓) = (f1(✓), ..., fk(✓)), such that gj(✓)  cj, j = 1, 2, ..., J, and hl(✓) = dl, l =

1, 2, ..., L, fi(✓) represent the k different, potentially competing, objective functions, f(✓) is a

vector of the different objective functions, gj and hl represent J inequality constraints and L

equality constraints, respectively, and ✓ is a vector of design variables (Marler and Arora, 2004;

Cohon, 2013).

Pareto optimality is a concept of optimality used for eq. 1 when no value of ✓ simulta-

neously optimizes all functions fi. A Pareto optimal solution for a minimization problem is a

solution ✓⇤ 2 ⇥ for which there is no other solution ✓ 2 ⇥ such that both f(✓)  f(✓⇤),

and fi(✓) < fi(✓⇤) for at least one function i (Deb, 2001; Marler and Arora, 2004). For de-

cision problems with competing objectives, there are many (potentially infinite), Pareto optimal

solutions. The set of solutions that are Pareto optimal are known as the Pareto set (or Pareto

frontier or efficiency frontier). Each solution in a Pareto set has an implied set of preferences

for the objective functions fi (Deb, 2001; Williams and Hooten, 2016). Thus, choosing among a

set of Pareto optimal solutions requires assuming (either implicitly or explicitly) preferences for

the objective functions fi. Preferences among objective functions can be specified pre- or post-

optimization, representing two separate strategies to solving eq. 1 (Williams and Kendall, 2017).

When specifying preferences pre-optimization, decision makers explicitly describe preferences

of objective functions and select the Pareto optimal solution associated with their choice of pref-

erences. When specifying preferences post-optimization, decision makers first examine the set

of Pareto optimal solutions. Then the decision maker chooses the final Pareto optimal solution

based on the trade-offs observed among the set. The choice implies decision-maker preferences.

One of the most common methods for incorporating preferences for fi into a decision problem

pre-optimization, is the weighted-sum method (Athan and Papalambros, 1996; Das and Dennis,

1997; Cohon, 2013; Williams and Kendall, 2017). The weighted-sum method is described by

f(✓) =
kX

i=1

wifi(✓), (2)
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for which the optimal solution is

f(✓⇤) = optimize✓
kX

i=1

wifi(✓). (3)

The weights wi are chosen by the decision maker to reflect the importance of each objective

function fi. The weighted-sum method is a composition that results in a single objective function

over which to optimize. When optimizing one objective function, an unequivocal optimal choice

can be made.

We examine model selection within the MOO framework and demonstrate that several meth-

ods commonly used for model selection in scientific research are specific cases of the MOO

problem solved using the weighted-sum method with a priori specification of preferences. We

examine concepts of the MOO framework, specifically Pareto optimality, as it relates to sev-

eral common model selection methods. Finally, we examine the second strategy of MOO, post-

specification of preferences, and its application to the model selection problem in scientific re-

search. We demonstrate the concepts presented using an example from the field of ecology

involving variable selection in a generalized linear regression model for avian species richness

data.

2 MODEL SELECTION AS A MOO PROBLEM

Methods for model selection typically consist of minimizing a weighted sum of two functions,

often described heuristically as a function for model fit and a function for model complexity (e.g.,

Burnham and Anderson, 2002, p. 87). That is, from eq. 2 we obtain

f(✓⇤) = min✓

2X

i=1

wifi(✓), (4)

where ✓⇤ represents the optimal solutions from the set of design variables ✓ (i.e., model pa-

rameters), describing fit and complexity of any model, wi are weights for the importance of the

objectives associated with model fit and complexity, and fi are functions that quantify the value

of model fit and complexity. Clearly, eq. 4 is a specific form of the MOO problem defined in eq.

3. Theoretical justification exists for choices of objective functions fi(✓) and their correspond-
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ing weights wi (Akaike, 1973; Mallows, 1973; Schwarz et al., 1978; Gelfand and Ghosh, 1998;

Burnham and Anderson, 2002; Link and Barker, 2006; Hooten and Hobbs, 2015). Although

there is no consensus among statisticians on specific model selection methods, most of the theo-

retical development related to model selection can be described by two general functions for fi.

Differences in model selection criteria are often the result of different choices in weights. The

most common objective function for model fit is the negative log-likelihood of the data, given

parameters (i.e., the deviance). That is, if f1 is the objective function associated with model fit, it

is described as

f1(✓) = �log(L(✓|y)). (5)

Although the deviance is the most common objective function for model fit, others have been

used. For example in Mallows’ Cp, f1(✓) =
Pn

i=1(yi�µ̂sub)2Pn
i=1(yi�µ̂full)2

� n, where µ̂sub equals the estimated

mean of a sub-model in consideration, µ̂full equals the estimated mean of the full model in con-

sideration, and n equals the sample size (Mallows, 1973).

Hooten and Hobbs (2015) summarize several objective functions for model complexity using

a function proportional to

f2(✓) =
pX

j=1

|✓j � µj|�, (6)

known as the regulator, regularizer, or penalty. In eq. 6, p represents the number of parameters in

the model, � is the degree of the norm; a user-defined parameter that controls the relative penalty

of the distance between ✓j and µj , ✓j are parameter estimates for centered and scaled covariates,

and µj is a location parameter, often set to 0. Substituting the choices of f1(✓) and f2(✓) from

eqs. 5 and 6 into eq. 4, we obtain the following multi-objective optimization problem

f(✓) = w1f1(✓) + w2f2(✓),

= w1(�log(L(✓;y))) + w2

pX

j=1

|✓j � µj|�, (7)
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with the objective of min✓(f(✓)). Equation 7 is the general function used in many model se-

lection methods including Akaike’s information criterion (AIC), AIC for small samples (AICc),

quasi-AIC (QAIC), QAIC for small samples (QAICc), Schwartz’s information criterion (BIC),

ridge regression, LASSO (least absolute shrinkage and selection operator), natural Bayesian

shrinkage, and some forms of posterior predictive loss (Table 1; Gelfand and Ghosh, 1998;

Hooten and Hobbs, 2015). Each of the listed model selection methods result from specific choices

of w and �, which we report in Table 1. For example, let the weights be: w1 = 2, w2 = 2, and

set � to zero. With these weights, eq. 7 simplifies to �2log(L(✓|y)) + 2p, or AIC (Table 1).

Expressing model selection methods in terms of eq. 3 has an important result that links model

selection to Pareto optimality. For positive weights w, any solution to eq. 3 is a Pareto optimal

solution (Marler and Arora, 2010). Thus, any model selection method that can be expressed in

terms of eq. 7 (i.e., the methods in Table 1) results in a solution that is Pareto optimal with respect

to the objectives of maximizing model fit and minimizing model complexity.

3 MODEL SELECTION USING POST-OPTIMIZATION SE-

LECTION OF WEIGHTS

Solving a MOO problem with competing objectives using post-optimization specification of

weights requires first identifying as many Pareto optimal solutions as possible, then choosing

among the Pareto optimal solutions (Williams and Kendall, 2017). Pareto optimal solutions for

the objective functions in eqs. 5 and 6 are models for which increasing the value of eq. 5 requires

a decrease in the values in eq. 6, and vice versa. One method for identifying Pareto optimal

solutions with two objective functions, each depending on ✓, is to plot the values of eqs. 5 and

6 for each candidate model on opposing axes to identify the Pareto frontier (e.g., Fig. 1). After

the Pareto frontier is identified, the decision maker can select the model based on the trade-offs

observed in the Pareto frontier. This is analogous to best subset selection, an active area of sta-

tistical research (e.g., Hastie et al., 2009). Thus, the selection of the final model is made without

explicitly choosing weights w associated with the model selection criteria listed in Table 1. How-

ever, if a choice from the Pareto frontier is also optimal with respect to specific model-selection

criterion, the weights of that selection criterion are implied.
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Model
selection
method

w1 w2 � Note

AIC 2 2 0

AICc 2 2( n
n�p�1) 0

QAIC 2
ĉ 2 0 ĉ = �2/df

QAICc
2
ĉ 2( n

n�p�1) 0 ĉ = �2/df

BIC 2 log(n) 0

⇤Ridge
regression 1 User defined

or estimated
2 Larger values of

w2 shrink � to 0.

⇤LASSO 1 User defined
or estimated

1 Larger values of
w2 shrink � to 0.

Table 1: Values of weights (wi) and � for the multi-objective optimization problem of model
selection described in eq. 7 for various model selection methods. The objective function
for model fit is -log(L(✓|y)), where ✓ ⌘ �; the objective function for model complexity isPp

j=1 |�j � µj|�, j = 1, ..., p. AIC = Akaike’s information criterion; AICc = Second-order
information criterion; QAIC = quasi-AIC; BIC = Schwartz information criterion; n = sample
size; p = no. parameters in model. (⇤) indicates objective function for model fit defined by:Pn

i=1(yi � �0 � x0�)2. See Burnham and Anderson (2002) and Hooten and Hobbs (2015) for
additional details.

4 EXAMPLE: AVIAN SPECIES RICHNESS IN THE U.S.

Model selection is regularly used in the field of ecology to select variables to include in linear

and generalized linear regression models. We examine the variable selection problem within a

MOO framework by considering avian species richness in the contiguous U.S. as a function of

state-level covariates. These data were originally used to demonstrate model selection techniques
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in Hooten and Cooch (In Press). As in Hooten and Cooch (In Press), we seek to model the

number of avian species yi (i = 1, . . . , 49) counted in each of the contiguous states in the U.S.

and Washington D.C., based on covariate information xi collected in each state. The covariate

information includes the area of the state, the average temperature, and the average precipitation.

We modeled count data using a Poisson distribution

yi ⇠ Poisson(�i),

where �i represents the mean species richness in each state. We linked mean species richness to

the covariate data using the log link function

log(�i) = �0 + �1x1,i + . . .+ �pxp,i. (8)

We considered a total of 24 different models, representing different linear and quadratic combi-

nations of eq. 8; each of the 24 candidate models are provided in Table 2. We used the glm

function in R statistical software version 3.3.2 (R Core Team, 2013) to fit the models to the data.

Code to fit the models and plot Fig. 1 is provided in the Appendix.

4.1 Model selection using AIC

To conduct model selection for the avian species richness data, we used the objective function in

eq. 7 with values of w ⌘ 2, and � = 0 (i.e., AIC). That is, for a Poisson likelihood, the weighted

objective function was

f(�m) = 2

✓ nX

i=1

(�i,m � yilog(�i,m) + log(yi!))
◆
+ 2

pmX

j=1

|�j,m|0, (9)

where �m is the subset of parameters for model m = 1, ..., 24, n is the sample size, and the term

log(yi!) can be omitted because it is independent of �m, and therefore, constant among models,

provided the likelihood is not changed.

The model from Table 2 that minimized eq. 9 (i.e., the AIC top model) included the intercept

a linear area effect, and a quadratic precipitation and temperature effect. All other model fitting

results are shown in Table 2.
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Finally, a common practice for pre-specification of weights in MOO problems in other appli-

cations includes examining the sensitivity of the optimal choice relative to the selected weights

(Barron and Schmidt, 1988; Insua, 1990). An analogous procedure in the model selection frame-

work is to examine the optimal solutions relative to different information criteria because different

criteria represent different objective weights (Table 1). The AIC, AICc, and BIC criteria all re-

sulted in the same top model suggesting the optimal solution for these data was robust to several

different choices of weights.

4.2 Model selection by examining Pareto optimal solutions

Using avian species richness data, we examined model selection via specification of preferences

post-optimization (Fig. 1). That is, we identified Pareto optimal solutions among the 24 models,

and then considered potential methods for selecting a model. To identify Pareto optimal solutions,

we used a graphical approach and plotted the values f1 and f2 described in eq. 9 for each model on

opposing axes to identify solutions along the Pareto frontier (Fig. 1). Identifying Pareto optimal

solutions does not require specifying w1 or w2, and therefore does not require adhering to an

information criterion. The Pareto optimal set included 6 models; one model for each number of

parameters 1, . . . , 7, except p = 5, where both model fit and complexity could be simultaneously

improved by using the top model containing four parameters. Each Pareto solution represented

the model that minimized eq. 9 among all models with the same number of parameters. There

were 17 dominated models (i.e., models that were not Pareto optimal; Fig. 1). The AIC top model

was a Pareto optimal solution; this was expected because AIC (and other information criteria) is a

specific formulation of the weighted-sum method and is therefore sufficient for Pareto optimality

(Marler and Arora, 2010). Each of the Pareto solutions correspond to a specific set of weights in

eq. 7.

Given the information on Pareto optimal solutions in Fig. 1, selecting a final model for infer-

ence can proceed in many ways, depending on the application and the nature of the parameters

under consideration. A decision maker can use the information on Pareto optimal solutions to

view trade-offs of fit gained by adding (or subtracting) additional parameters from the model,
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Figure 1: Model fit (f1(✓) = �log(L(✓|y)) vs. model complexity (f2(✓) = no. parameters) for
each candidate model fit to avian species richness data. Optimal solutions minimize fit (moving
towards bottom of figure) and complexity (moving to the left of figure). The top model using
f(✓) = AIC was a Pareto optimal solution. Two candidate models (i.e., �AIC < 2) were not
Pareto optimal (i.e., they were dominated by another model).
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and choose a Pareto optimal solution with trade-offs acceptable to the decision maker. Some

parameters might be associated with covariates for which annual data are difficult, expensive,

or impossible to collect. The trade-offs in terms of model fit can be assessed relative to the ex-

pense of collecting additional data for these parameters. If the increase in model fit from the

Pareto optimal solution that requires the additional (expensive) covariate data does not justify the

additional expense, another Pareto optimal solution may be preferred.

Another approach is to examine the curvature of the Pareto frontier. An elbow shape (e.g, Fig.

1: p = 3) can be identified, where increasing the number of parameters has diminishing marginal

returns in terms of f1, and decreasing the parameter size has a large affect on f1. In the avian

species richness data, the largest improvement in model fit, per parameter added, was adding

area to the null model (an 86 unit improvement to fit; Fig. 1). Subsequent parameter additions

showed diminishing marginal returns in model fit; the second biggest improvement in model fit

was adding precipitation to the area model (23 units), followed by adding temperature to the area

+ precipitation model (7 units). No models with five parameters occurred on the Pareto frontier.

Another approach is to compare the trade-offs to biological significance of the parameters

involved and the need to make inference on those parameters. For example, if a parameter is re-

quired to inform a management decision, such as survival rates for harvest decisions, a decision

maker would prefer to choose a Pareto optimal solution that included survival rates. Another

approach might be to choose a Pareto optimal solution such that the maximum number of param-

eters is constrained by the amount of data. For example, if an investigator wishes to constrain the

number of parameters in the model such that p < n
15 , the investigator could select the Pareto op-

timal solution that maximized model fit within the constrained set. In the avian species richness

data, with n = 49, this would suggest choosing the Pareto optimal model with three parameters

(with log linear predictor �0 + �1xarea,t + �2xtemp,t; Table 2).

Finally, models that are optimal in terms of model selection criteria could be highlighted as

reference points on the Pareto frontier to guide decisions on the final model choice. Ultimately,

the use of the Pareto frontier is that it provides visual information on the trade-offs of the objec-

tives of the decision maker; in this case, maximizing model fit and minimizing complexity.
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5 DISCUSSION

The explicit application of multi-objective optimization to model selection using the objective

functions defined in eqs. 5 and 6 ties several important properties of MOO to common methods

used in scientific research to select a model. First, many different model selection methods are

special cases of the weighted-sum method; each method representing different objective weights.

This provides a unifying framework to quantitatively and visually compare model-selection meth-

ods based on different theoretical foundations. Practitioners of multi-objective optimization in

operations research or other decision-theoretic fields usually recommend sensitivity analyses of

the resulting decisions given the choice of objective weights (Keeney and Raiffa, 1976; Williams

and Kendall, 2017). A sensitivity analysis for the model selection problem consists of evaluating

multiple model selection criteria (representing different objective weights) to examine the robust-

ness of the solution to the choice of criterion. Many practitioners argue against this approach,

suggesting that a criterion should be selected based on its theoretical motivation (e.g., AIC is

asymptotically efficient; BIC is consistent, Aho et al., 2014). Others view a specific information

criterion as one line of evidence to assist in a decision and report different criteria side-by-side

(e.g., Araújo and Luoto, 2007; Parviainen et al., 2008). The former appears to be the dominant

paradigm in ecological research, whereas the latter is common in other fields. Second, many

model selection methods result in Pareto optimal solutions because they are specific formula-

tions of eq. 2, which is sufficient for Pareto optimality. Thus, there is a decision-theoretic basis

for model selection methods that can be expressed in the form of eq. 7 in terms of optimality

criteria.

Although we described the model selection problem heuristically in terms of maximizing

model fit and minimizing model complexity, we could have replaced model fit with predictive

ability as the objective of interest. Predictive ability is the most commonly sought model char-

acteristic for model selection, and many information criteria and other model selection methods

were developed to optimize predictive ability (Akaike, 1973; Stone, 1977; Gelfand and Ghosh,

1998; Hoeting et al., 1999; Burnham and Anderson, 2002; Hooten and Hobbs, 2015). Many in-

formation criteria have weights and penalties that serve as bias corrections for optimization in

terms of predictive ability (Konishi and Kitagawa, 1996). That is, many information criteria are
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based on bias-corrected log likelihoods, for which the model complexity is a correction factor to

remove asymptotic bias of the log likelihood of a fitted model (Konishi and Kitagawa, 1996). The

MOO problem in terms of maximizing predictive ability and accounting for model bias is similar

in spirit to the MOO problem of maximizing model fit while minimizing model complexity.

Model selection by examining trade-offs of fit and complexity post-optimization has been

used in several other applications. Users of Mallows’ Cp often conduct similar investigations

(Mallows, 1973). Freitas (2004) examined Pareto optimality in the related question comparing

prediction and simplicity for data mining. Viewing each model’s trade-offs, in terms of objec-

tives, provides a visual assessment of the model selection problem, a potentially useful tool for

ultimately choosing a model for inference or prediction. As is the case with any multi-objective

optimization problem, the additional flexibility in model choice based on post-optimization spec-

ification of preferences could be viewed as either a positive or negative trait, depending on how

an investigator values the order for which preferences are specified. Specifying preferences pre-

optimization for the model selection problem benefits from being objective in the sense that a

decision maker chooses how to weigh their specific objective functions without being influenced

by how weights will alter the outcome of optimization. Specifying preferences post-optimization

has the added flexibility of choosing a Pareto optimal solution that provides the best trade-offs

for context dependent decision problems.

SUPPLEMENTARY MATERIAL

Appendix: R statistical software script to fit models described in Table 2 to avian species rich-

ness data, and calculate and plot values for eqs. 5 and 6 shown in Fig. 1.
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Araújo, M. B., and M. Luoto. 2007. The importance of biotic interactions for modelling species

distributions under climate change. Global Ecology and Biogeography 16:743–753.

Athan, T. W., and P. Y. Papalambros. 1996. A note on weighted criteria methods for compromise

solutions in multi-objective optimization. Engineering Optimization 27:155–176.

Barron, H., and C. P. Schmidt. 1988. Sensitivity analysis of additive multiattribute value models.

Operations Research 36:122–127.

Burnham, K. P., and D. R. Anderson. 2002. Model selection and multimodel inference: a

practical information-theoretic approach. Springer Science & Business Media.

Cohon, J. L. 2013. Multiobjective programming and planning. Courier Dover Publications.

Das, I., and J. E. Dennis. 1997. A closer look at drawbacks of minimizing weighted sums of

objectives for Pareto set generation in multicriteria optimization problems. Structural Opti-

mization 14:63–69.

Deb, K. 2001. Multi-objective optimization using evolutionary algorithms. John Wiley & Sons.

Freitas, A. A. 2004. A critical review of multi-objective optimization in data mining: a position

paper. ACM SIGKDD Explorations Newsletter 6:77–86.

Gelfand, A. E., and S. K. Ghosh. 1998. Model choice: a minimum posterior predictive loss

approach. Biometrika 85:1–11.

Hastie, T., J. Friedman, and R. Tibshirani. 2009. The Elements of Statistical Learning. Springer.

Hoeting, J. A., D. Madigan, A. E. Raftery, and C. T. Volinsky. 1999. Bayesian model averaging:

a tutorial. Statistical Science 14:382–401.

Hooten, M. B., and E. G. Cooch, In Press. Comparing ecological models. Pages 373–394 in

B. G. Marcot, A. Tri, and L. A. Brennan, editors. Quantitative Analysis in Wildlife Science.

Johns Hopkins University Press.

Hooten, M. B., and N. T. Hobbs. 2015. A guide to Bayesian model selection for ecologists.

Ecological Monographs 85:3–28.

17



Insua, D. R. 1990. Sensitivity analysis in multi-objective decision making. Springer-Verlag.

Keeney, R. L., and H. Raiffa. 1976. Decisions with multiple objectives: preferences and value

trade-offs. Cambridge University Press.

Konishi, S., and G. Kitagawa. 1996. Generalised information criteria in model selection.

Biometrika 83:875–890.

Link, W. A., and R. J. Barker. 2006. Model weights and the foundations of multimodel inference.

Ecology 87:2626–2635.

Mallows, C. L. 1973. Some comments on Cp. Technometrics 15:661–675.

Marler, R. T., and J. S. Arora. 2004. Survey of multi-objective optimization methods for engi-

neering. Structural and Multidisciplinary Optimization 26:369–395.

Marler, R. T., and J. S. Arora. 2010. The weighted sum method for multi-objective optimization:

new insights. Structural and Multidisciplinary Optimization 41:853–862.
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