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Abstract. Checking that models adequately represent data is an essential component

of applied statistical inference. Ecologists increasingly use hierarchical Bayesian statistical

models in their research. The appeal of this modeling paradigm is undeniable, as

researchers can build and fit models that embody complex ecological processes while

simultaneously accounting for observation error. However, ecologists tend to be less

focused on checking model assumptions and assessing potential lack of fit when applying

Bayesian methods than when applying more traditional modes of inference such as

maximum likelihood. There are also multiple ways of assessing the fit of Bayesian models,

each of which has strengths and weaknesses. For instance, Bayesian p-values are relatively

easy to compute, but are well known to be conservative, producing p-values biased toward

0.5. Alternatively, lesser known approaches to model checking, such as prior predictive
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checks, cross-validation probability integral transforms, and pivot discrepancy measures

may produce more accurate characterizations of goodness-of-fit but are not as well known

to ecologists. In addition, a suite of visual and targeted diagnostics can be used to examine

violations of different model assumptions and lack of fit at different levels of the modeling

hierarchy, and to check for residual temporal or spatial autocorrelation. In this review, we

synthesize existing literature to guide ecologists through the many available options for

Bayesian model checking. We illustrate methods and procedures with several ecological

case studies, including i) analysis of simulated spatio-temporal count data, (ii) N -mixture

models for estimating abundance of sea otters from an aircraft, and (iii) hidden Markov

modeling to describe attendance patterns of California sea lion mothers on a rookery. We

find that commonly used procedures based on posterior predictive p-values detect extreme

model inadequacy, but often do not detect more subtle cases of lack of fit. Tests based on

cross-validation and pivot discrepancy measures (including the “sampled predictive

p-value”) appear to be better suited to model checking and to have better overall

statistical performance. We conclude that model checking is necessary to ensure that

scientific inference is well founded. As an essential component of scientific discovery, it

should accompany most Bayesian analyses presented in the literature.

Key words: Bayesian model checking, Bayesian p-value, goodness-of-fit, hierarchical

model, model diagnostics, posterior checks

Introduction

Ecologists increasingly use Bayesian methods to analyze complex hierarchical models for

natural systems (Hobbs and Hooten 2015). There are clear advantages of adopting a
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Bayesian mode of inference, as one can entertain models that were previously intractable

using common modes of statistical inference (e.g., maximum likelihood). Ecologists use

Bayesian inference to fit rich classes of models to their datasets, allowing them to separate

measurement error from process error, and to model features such as temporal or spatial

autocorrelation, individual level random effects, and hidden states (Link et al. 2002, Clark

and Bjørnstad 2004, Cressie et al. 2009). Applying Bayesian calculus also results in

posterior probability distributions for parameters of interest; used together with posterior

model probabilities, these can provide the basis for mathematically coherent decision and

risk analysis (Link and Barker 2006, Berger 2013, Williams and Hooten 2016).

Ultimately, the reliability of inference from a fitted model (Bayesian or otherwise)

depends on how well the model approximates reality. There are multiple ways of assessing

a model’s performance in representing the system being studied. A first step is often to

examine diagnostics that compare observed data to model output to pinpoint if and where

any systematic differences occur. This process, which we term model checking, is a critical

part of statistical inference because it helps diagnose assumption violations and illuminate

places where a model might be amended to more faithfully represent gathered data.

Following this step, one might proceed to compare the performance of alternative models

embodying different hypotheses using any number of model comparison or out-of-sample

predictive performance metrics (see Hooten and Hobbs 2015, for a review) to gauge the

support for alternative hypotheses or optimize predictive ability (Fig. 1).

Non-Bayesian statistical software often include a suite of goodness-of-fit diagnostics

that examine different types of lack of fit (Table 1). For instance, when fitting generalized

linear (McCullagh and Nelder 1989) or additive (Wood 2006) models in the R

programming environment (R Development Core Team 2017), one can easily access
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diagnostics such as quantile-quantile, residual, and leverage plots. These diagnostics allow

one to assess the assumed probability model, to examine whether there is evidence of

heteroskedasticity, and to pinpoint outliers. Likewise, in capture-recapture analysis, there

are established procedures for assessing overall fit and departures from specific model

assumptions that are coded in user-friendly software such as U-CARE (Choquet et al.

2009). Results of such goodness-of-fit tests are routinely reported when publishing analyses

in the ecological literature.

The implicit requirement that one conduct model checking exercises is not often

adhered to when reporting results of Bayesian analyses. For instance, a search of Ecology

articles published in 2014 indicated that only 25% of articles employing Bayesian analysis

on real datasets reported any model checking or goodness-of-fit testing (Fig. 2). There are

several reasons why Bayesian model checking (hereafter, BMC) is uncommon. First, it

likely has to do with inertia; the lack of precedent in ecological literature may lead some

authors looking for templates on how to publish Bayesian analyses to conclude that model

checking is unnecessary. Second, when researchers seek to publish new statistical methods,

applications may be presented more as proof-of-concept exhibits than as definitive analyses

that can stand up to scrutiny on their own. In such studies, topics like goodness-of-fit and

model checking are often reserved for future research, presumably in journals with less

impact. Third, all of the articles we examined did a commendable job in reporting

convergence diagnostics to support their contention that MCMC chains had reached their

stationary distribution. Perhaps there is a mistaken belief among authors and reviewers

that convergence to a stationary distribution, combined with a lack of prior sensitivity,

implies that a model fits the data. In reality, convergence diagnostics such as trace plots

only allow us to check the algorithm for fitting the model, not the model itself. Finally, it
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may just be a case of fatigue: it takes considerable effort to envision and code complex

hierarchical models of ecological systems, and the extra step of model checking may seem

burdensome. Regardless of the reason for not reporting BMC, it is concerning because

poorly specified models can lead to incorrect scientific inference.

If we accept the premise that Bayesian models should be routinely checked for

compatibility with data, a logical next question is how best to conduct such checks.

Unfortunately, there is no single best answer. Most texts in ecology (e.g., King et al. 2009,

Link and Barker 2010, Kéry and Schaub 2012) focus on posterior predictive checks, as

pioneered by Guttman (1967), Rubin (1981, 1984), and Gelman et al. (1996) (among

others). These procedures are also the main focus of popular Bayesian analysis texts (e.g.,

Cressie and Wikle 2011, Gelman et al. 2014) and are based on the intuitive notion that

data simulated from the posterior distribution should be similar to the data one is

analyzing. However, “Bayesian p-values” generated from these tests tend to be

conservative (biased toward 0.5) because the data are used twice (once to fit the model and

once to test the model; Bayarri and Berger 2000, Robins et al. 2000). Depending on the

data, the conservatism of Bayesian p-values can be considerable (Zhang 2014) and can be

accompanied by an inability to detect lack of fit (Yuan and Johnson 2012, Zhang 2014). By

contrast, other less familiar approaches (such as prior predictive checks, sampled posterior

p-values, cross-validated probability integral transforms, and pivot discrepancy measures)

may produce more accurate characterizations of model fit.

In this monograph, we collate relevant statistical literature with the goal of providing

ecologists with a practical guide to BMC. We start by defining a consistent notation that

we use throughout the paper. Next, we inventory a number of BMC procedures, providing

pros and cons for each approach. We illustrate BMC with several examples; code to
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implement these examples are available in an accompanying R package, HierarchicalGOF

(Conn et al. 2018). In the first example, we use simulation to study the properties of a

variety of BMC procedures applied to spatial models for count data. In the second

example, we apply BMC procedures to check the closure assumption (i.e., that the

population being sampled is closed with respect to births, deaths, and movement) of

N-mixture models, using both simulated data and data from northern sea otters (Enhydra

lutris kenyoni) in Glacier Bay, Alaska, U.S.A. Finally, we apply BMC to examine

attendance patterns of California sea lions (CSL; Zalophus californianus) using

capture-recapture data from a rookery on San Miguel Island, California, U.S.A. We

conclude with several recommendations on how model checking results should be presented

in the ecological literature.

Background and notation

Before describing specific model checking procedures, we first establish common notation.

Bayesian inference seeks to describe the posterior distribution, [θ|y], of model parameters,

θ, given data, y. Throughout the paper, we use bold lowercase symbols to denote vectors.

Matrices are represented with bold, uppercase symbols, while Roman (unbolded)

characters are used for scalars. The bracket notation ‘[. . .]’ denotes a probability

distribution or mass function, and a bracket with a vertical bar ‘|’ denotes that it is a

conditional probability distribution (Gelfand and Smith 1990).

The posterior distribution is often written as

[θ|y] =
[y|θ][θ]

[y]
, (1)
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where [y|θ] is the assumed probability model for the data, given parameters (i.e., the

likelihood), [θ] denotes the joint prior distribution for parameters, and [y] is the marginal

distribution of the data. In Bayesian computation, the denominator [y] is frequently

ignored because it is a fixed constant that does not affect inference (although it is needed

when computing Bayes factors for model comparison and averaging; Link and Barker

2006). The exact mechanics of Bayesian inference are well reviewed elsewhere (e.g., King

et al. 2009, Link and Barker 2010, Hobbs and Hooten 2015), and we do not attempt to

provide a detailed description here. For the remainder of this treatment, we assume that

the reader has familiarity with the basics of Bayesian inference, including Markov Chain

Monte Carlo (MCMC) as a versatile tool for sampling from [θ|y].

In describing different model checking procedures, we often refer to data simulated

under an assumed model. We use yrepi to denote the ith simulated dataset under the model

that is being checked. In some situations, we may indicate that the dataset was simulated

using a specific parameter vector, θi; in this case, denote the simulated dataset as yrepi |θi.

We use the notation T (y,θ) to denote a discrepancy function that is dependent upon data

and possibly the parameters θ. For instance, we might compare the discrepancy T (y,θ)

calculated with observed data to a distribution obtained by applying T (yrep,θ) to multiple

replicated data sets. Examples of candidate discrepancy functions are provided in Table 2.

Model checking procedures

Our goal in this section is to review relevant BMC procedures for typical models in ecology,

with the requirement that such procedures be accessible to statistically-minded ecologists.

As such, we omit several approaches that have good statistical properties but have been
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criticized (e.g., Johnson 2007b, Zhang 2014) as too computationally intensive, conceptually

difficult, or problem-specific. For instance, we omit consideration of double-sampling

methods that may increase the computational burden of a Bayesian analysis by an order of

magnitude (Johnson 2007b), including “partial posterior” and “conditional predictive”

p-values (e.g., Bayarri and Berger 1999, Robins et al. 2000, Bayarri and Castellanos 2007).

A brief summary of the model checking procedures we consider is provided in Table 3; we

now describe each of these approaches in greater depth.

Prior predictive checks

Box (1980) argued that the hypothetico-deductive process of scientific learning can be

embodied through successive rounds of model formulation and testing. According to his

view, models are built to represent current theory and an investigator’s knowledge of the

system under study; data are then collected to evaluate how well the existing theory (i.e.,

model) matches up with reality. If necessary, the model under consideration can be

amended, and the process repeats itself.

From a Bayesian standpoint, such successive rounds of estimation and criticism can be

embodied through posterior inference and model checking, respectively (Box 1980). If one

views a model, complete with its assumptions and prior beliefs, as a working model of

reality, then data simulated under a model should look similar to data gathered in the real

world. This notion can be formalized through a prior predictive check, where replicate data

yrep are simulated via

θrep ∼ [θ] (2)

yrep ∼ [y|θrep]

This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le
and then compared to observed data y via a discrepancy function (Appendix S1, Alg. 1).

When the prior distribution [θ] is proper (i.e., integrates to 1.0), p-values from prior

predictive checks are uniformly distributed under the null model (Bayarri and Berger 2000).

The main problem with this approach is that prior distributions must be able to predict

the likely range of data values; therefore, they require substantial expert opinion or data

from previous studies. In our experience, when Bayesian inference is employed in ecological

applications, this is not often the case. Still, prior predictive checks may be useful for

Bayesian models that serve as an embodiment of current theory about a study system (e.g.,

population or ecosystem dynamics models). Alternatively, a subset of data (test data) can

be withheld when fitting a model, and the posterior distribution [θ|y] can be substituted

for [θ] in Eq. 2. If used in this manner, prior predictive checks can be viewed as a form of

cross-validation, a subject we examine in a later subsection (see cross-validation tests).

Prior predictive checks appear to have found little use in applied Bayesian analysis

(but see Dey et al. 1998), at least in the original form proposed by Box (1980). However,

they are important as historical precursors of modern day approaches to Bayesian model

checking. Further, several researchers have recently used discrepancy measures calculated

on prior predictive data sets to help calibrate posterior predictive (e.g., Hjort et al. 2006)

or joint pivot discrepancy (Johnson 2007a) p-values so that they have a uniform null

distribution. These calibration exercises are not conceptually difficult but do have a high

computational burden (Yuan and Johnson 2012). The properties (e.g., type I error

probabilities, power) of p-values produced with these methods also depend critically on the

similarity of the real world data-generating process with the prior distributions used for

calibration (Zhang 2014).
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Posterior predictive checks

Posterior predictive checks are the dominant form of Bayesian model checking advanced in

statistical texts read by ecologists (e.g., King et al. 2009, Link and Barker 2010, Kéry and

Schaub 2012, Gelman et al. 2014). Although sample size was small (n = 25), a survey of

recent Ecology volumes indicated that posterior predictive checks are also the dominant

form of BMC being reported in ecological literature (Fig. 2). Posterior predictive checks

are based on the intuition that data simulated under a fitted model should be comparable

to the real-world data the model was fitted to. If observed data differ from simulated data

in a systematic fashion (e.g., excess zeros, increased skew, increased variance, lower

kurtosis), it indicates that model assumptions are not being met.

Posterior predictive checks can be used to look at differences between observed and

simulated data graphically, or can be used to calculate “Bayesian p-values” (Appendix S1,

Alg. 2). Bayesian p-values necessarily involve application of a discrepancy function,

T (y,θ), for comparing observations to simulated data. Omnibus discrepancy functions

help diagnose global lack of fit, while targeted discrepancy functions can be used to look

for systematic differences in specific data features (Table 2). Posterior predictive checks

involve cyclically drawing parameter values from the posterior distribution (i.e., θi ∼ [θ|y])

and then generating a replicate dataset for each i, yrepi ∼ [y|θi], to compute the reference

distribution for the discrepancy test statistic (Gelman et al. 2014, Appendix S1, Alg. 2).

Posterior predictive checks are straightforward to implement. Unfortunately, Bayesian

p-values based on these checks tend to be conservative in the sense that the distribution of

p-values calculated under a null model (i.e., when the data generating model and

estimation model are the same) is often dome-shaped instead of the uniform distribution

This article is protected by copyright. All rights reserved. 
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expected of frequentist p-values (Robins et al. 2000). This feature arises because data are

used twice: once to approximate the posterior distribution and to simulate the reference

distribution for the discrepancy measure, and a second time to calculate the tail probability

(Bayarri and Berger 2000). As such, the power of posterior predictive Bayesian p-values to

detect significant differences in the discrepancy measure is low. Evidently, the degree of

conservatism can vary across data, models, and discrepancy functions, making it difficult to

interpret or compare Bayesian p-values across models. In an extreme example, Zhang

(2014) found that posterior predictive p-values almost never rejected a model, even when

the model used to fit the data differed considerably from the model used to generate it.

Another possible criticism of posterior predictive checks is that they rely solely on

properties of simulated and observed data. Given that a lack of fit is observed, it may be

difficult to diagnose where misspecification has occurred within the modeling hierarchy

(e.g., priors, mean structure, choice of error distribution). Further, a poorly specified mean

structure (e.g., missing important covariates) may still result in reasonable fit if the model

is made sufficiently flexible (e.g., via random effects or covariance).

These cautions do not imply that posterior predictive checks are devoid of value.

Indeed, given that tests are conservative, small (e.g., < 0.05) or very large (e.g., > 0.95)

p-values strongly suggest lack of fit. Further, graphical displays (see Graphical techniques)

and targeted discrepancies (Table 2) may help pinpoint common assumption violations

(e.g., lack of independence, zero inflation, overdispersion). However, it is often less clear

how to interpret p-values and discrepancies that indicate no (or minor) lack of fit. In these

cases, it seems necessary to conduct simulation-based exercises to determine the range of

p-values that should be regarded as extreme, and to possibly calibrate the observed p-value

with those obtained in simulation exercises (e.g., Dey et al. 1998, Hjort et al. 2006).

This article is protected by copyright. All rights reserved. 
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Some practical suggestions may help to reduce the degree of conservatism of posterior

predictive p-values. Lunn et al. (2013) suggest that the level of conservatism depends on

the discrepancy function used; discrepancy functions that are solely a function of simulated

and observed data (e.g., proportion of zeros, distribution of quantiles) may be less

conservative than those that also depend on model parameters (e.g., summed Pearson

residuals). Similarly, Marshall and Spiegelhalter (2003) suggest reducing the impact of the

double use of data by iteratively simulating random effects when generating posterior

predictions for each data point, a procedure they term a “mixed predictive check” (also

called “ghosting”). For instance, rather than basing a posterior prediction directly on

random effect realizations available from MCMC sampling, we could instead simulate

random effects from a leave-one-out distribution. For an example of this latter approach,

see Spatial regression simulations.

Sampled posterior p-values

Posterior predictive checks rely on multiple draws from a posterior distribution.

Alternatively, one can simulate a single parameter vector from the posterior, θ̃ ∼ [θ|y], and

then generate replicate datasets conditional on this parameter vector alone (i.e.,

yrepi ∼ [y|θ̃]), otherwise calculating the p-value in the same manner. This choice may seem

strange because the resulting p-value can vary depending upon the posterior sample, θ̃, but

a variety of theoretical arguments (e.g., Johnson 2004; 2007a, Yuan and Johnson 2012,

Gosselin 2011) and several simulation studies (e.g., Gosselin 2011, Zhang 2014) suggest

that it may be a preferable choice, both in terms of Type I error control and power to

detect lack of fit. In fact, sampled posterior p-values are guaranteed to at least have an

asymptotic uniform distribution under the null (Gosselin 2011). Sampled posterior p-values
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can also be calculated using pivotal discrepancy measures, reducing computational burden

(i.e., eliminating the requirement that replicate datasets be generated). We describe an

example of this approach in Spatial regression simulations.

Pivotal discrepancy measures (PDMs)

In addition to overstated power to detect model lack of fit, posterior predictive p-values are

limited to examining systematic differences between observed data and data simulated

under a hypothesized model. As such, there is little ability to examine lack of fit at higher

levels of modeling hierarchy. One approach to conducting goodness-of-fit tests at multiple

levels of the model is to use discrepancy functions based on pivotal quantities (Johnson

2004, Yuan and Johnson 2012). Pivotal quantities are random variables that can be

functions of data, parameters, or both, and that have known probability distributions that

are independent of parameters (e.g., Casella and Berger 1990, section 9.2.2). For instance, if

y ∼ N (µ, σ2)

then z = y−µ
σ

has a standard N (0, 1) distribution. Thus, z is a pivotal quantity in that it

has a known distribution independent of µ or σ.

This suggests a potential strategy for assessing goodness-of-fit; for instance, in a

Bayesian regression model

y ∼ N (Xβ, σ2I), (3)

where X represents a design matrix, β is a vector of regression coefficients, and I is an
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identity matrix, we might keep track of

zij =
yi − x′iβj

σj
(4)

for each of j ∈ 1, 2, . . . , n samples from the posterior distribution (i.e., drawing each (βj, σj)

pair from [θ|y]). Systematic departures of zij from the theoretical N (0, 1) distribution can

point to model misspecification. Although we have focused on the data model in Eq. 3,

note that the same approach could be used at higher levels of the modeling hierarchy.

The advantage of using PDMs is that the reference distribution is known and does not

necessarily involve simulation of replicated datasets, yrep. In practice, there are several

difficulties with using pivotal quantities as discrepancy measures in BMC. First, as with

the sampled predictive p-value, p-values using PDMs are only guaranteed to be uniform

under the null if calculated with respect to a single posterior parameter draw, θ̃ ∼ [θ|y].

The joint distribution of PDMs calculated across i ∈ 1, 2, . . . , n samples from the posterior

distribution are not independent because they depend on the same observed data, y

(Johnson 2004). As with the Bayesian p-value calculated using a posterior predictive check,

this latter problem can result in p-values that are conservative. Yuan and Johnson (2012)

suggest comparing histograms of a pivotal discrepancy function T (y,θi) to its theoretical

distribution, f , to diagnose obvious examples of model misspecification.

A second problem is that, to apply these techniques, one must first define a pivotal

quantity and ascertain its reference distribution. Normality assessment is relatively

straightforward using standardized residuals (e.g., Eq. 4), but pivotal quantities are not

necessarily available for other distributions (e.g., Poisson). However, Yuan and Johnson

(2012), building upon work of Johnson (2004), proposed an algorithm based on cumulative
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distribution functions (CDFs) that can apply to any distribution, and at any level of a

hierarchical model (Appendix S1, Alg. 3). For continuous distributions, this algorithm

works by defining a quantity wij = g(yij,θ) (this can simply be wij = yij) with a known

CDF, F . Then, according to the probability integral transformation, F (w) will be

uniformly distributed if the the modeled distribution function is appropriate. Similarly, for

discrete distributions, we can apply a randomization scheme (Smith 1985, Yuan and

Johnson 2012) to transform discrete variables into continuously distributed uniform

variates. For example, when yij has integer valued support, we can define

wij = F (yij − 1|θ) + uijf(yij|θ),

where uij is a continuosly uniform random variable on (0,1) and F () and f() are the

cumulative mass and probability mass functions associated with [y|θ], respectively. In this

case, wij will be uniformly and continuously distributed on (0,1) if the assumed

distribution is reasonable; deviation from uniformity can point to model misspecification.

We have written the PDM algorithm in terms of the data distribution [y|θ] (Appendix

S1), but the algorithm can be applied to any level of a hierarchical model. Further, the

algorithm can be applied separately to different categories of mean response (e.g., low,

medium, or high levels of predicted responses). These advantages are extremely appealing

in that one can more thoroughly test distributional assumptions and look for places where

lack of fit may be occurring, something that can be difficult to do with posterior predictive

checks. We apply this algorithm in Spatial regression simulations and provide R code for

applying this approach to generic MCMC data in the R package HierarchicalGOF

accompanying this paper (see Software for more information).

This article is protected by copyright. All rights reserved. 
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Cross-validation tests

Cross-validation consists of leaving out one or more data points, conducting an analysis,

and checking how model predictions match up with actual observations. This process is

often repeated sequentially for different partitions of the data. It is most often used to

examine the relative predictive performance of different models (i.e., for model selection,

Arlot and Celisse 2010). However, one can also use cross-validation to examine model fit

and determine outliers. The primary advantage of conducting tests in this fashion is that

there is no duplicate use of data as with posterior predictive tests or those based on joint

PDMs. However, cross-validation can be computationally intensive (sometimes

prohibitively so) for complicated Bayesian hierarchical models.

One approach to checking models using cross-validation is the cross-validated

probability integral transform (PIT) test, which has long been exploited to examine the

adequacy of probabilistic forecasts (e.g., Dawid 1984, Früiiwirth-Schnatter 1996, Gneiting

et al. 2007, Czado et al. 2009). These tests work by simulating data at a set of times or

locations, and evaluating the CDF of the predictions at a set of realized data (where

realized data are not used to fit the model). This can be accomplished in a sequential

fashion for time series data, or by withholding data (as with leave-one-out

cross-validation). In either case, if the distribution of the CDF values from the realized

data diverge from a Uniform(0,1) distribution it is indicative of model deficiency. In

particular, a U-shape suggests an underdispersed model, a dome-shape suggests an

overdispersed model, and skew (i.e., mean not centered at 0.5) suggests bias. Congdon

(2014) provided an algorithm for computing PIT diagnostic histograms for both continuous

and discrete data in Bayesian applications (see Appendix S1, Alg. 4).
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Cross-validation can also be useful for diagnosing outliers in spatial modeling

applications. For instance, Stern and Cressie (2000) and Marshall and Spiegelhalter (2003)

use it to identify regions that have inconsistent behavior relative to the model. Such

outliers can indicate that the model does not sufficiently explain variation in responses,

that there are legitimate “hot spots” worthy of additional investigation (Marshall and

Spiegelhalter 2003), or both.

For certain types of data and models it is possible to approximate leave-one-out

cross-validation tests with a single sample from the posterior distribution. For instance, in

random effects models, importance weighting and resampling can be used to approximate

the leave-one-out distribution (Stern and Cressie 2000, Qiu et al. 2016). Similarly, Marshall

and Spiegelhalter (2007) use a “ghosting” procedure to resample random effects and

thereby approximate the leave-one-out distribution. When applicable, such approaches

have well known properties (i.e., a uniform distribution of p-values under the null; Qiu

et al. 2016).

Residual tests

Lunn et al. (2013) suggest several informal tests based on distributions of Pearson and

deviance residuals. These tests are necessarily informal in Bayesian applications because

residuals all depend on θ and are thus not truly independent as required in unbiased

application of goodness-of-fit tests. Nevertheless, several rules of thumb can be used to

screen residuals for obvious assumption violations. For example, standardized Pearson
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residuals for continuous data,

ri =
yi − E(yi|θ)√

Var(yi|θ)
,

should generally take on values between -2.0 and 2.0. Values far from this range represent

outliers. Similarly, for the Poisson and binomial distributions, a rule of thumb is that the

mean saturated deviance should approximately equal sample size for a well-fitting model

(Lunn et al. 2013).

For time series, spatial, and spatio-temporal models, failure to account for

autocorrelation can result in bias and overstated precision (Lichstein et al. 2002). For this

reason, it is important to look for evidence of residual spatio-temporal autocorrelation in

analyses where data have a spatio-temporal index. There are a variety of metrics to

quantify autocorrelation, depending upon the ecological question and types of data

available (e.g., Perry et al. 2002). For Bayesian regression models, one versatile approach is

to compute a posterior density associated with a statistic such as Moran’s I (Moran 1950)

or Getis-Ord G* (Getis and Ord 1992) on residuals. For example, calculating Moran’s I for

each posterior sample j relative to posterior residuals y − E(y|θj), a histogram of Ij values

can be constructed; substantial overlap with zero suggests little evidence of residual spatial

autocorrelation. Moran’s I is dependent upon a pre-specified distance-weighting scheme,

thus investigators can simulate a posterior sample of Moran’s I at several different choices

of weights or neighborhoods to evaluate residual spatial autocorrelation at different scales.

This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le
Graphical techniques

Many of the previously described tests require discrepancy functions, and it may be

difficult to formulate such functions for different types of lack of fit (e.g., Table 1).

Displaying model checking information graphically may lead to more rapid intuition about

where models do or do not fit the data. Alternative plots can be made for each type of

model checking procedure (e.g., posterior predictive checks, sampled predictive checks, or

even PDMs). For instance, Ver Hoef and Frost (2003) plotted posterior predictive χ2

discrepancy values for different sites where harbor seal counts had been performed. Models

accounting for overdispersion clearly resulted in improved fit at a majority of sites. The

consistency of predictions was clear in this case, whereas a single p-value one would not

effectively communicate where and how predictions were inaccurate.

Gelman et al. (2014) argued that residual and binned residual plots are instructive for

revealing patterns of model misspecification. In spatial problems, maps of residuals can be

helpful in detecting whether lack of fit is spatially clustered. The types of plots that are

possible are many and varied, so it is difficult to provide a comprehensive list in this space.

However, we illustrate several types of diagnostic plots in the following examples.

Computing

We conduct all subsequent analyses using a combination of R (R Development Core Team

2017) and JAGS (Plummer 2003). We used R to simulate data and to conduct model

testing procedures; JAGS was used to conduct MCMC inference and produce posterior

predictions. We developed an R package, HierarchicalGOF, that contains all of our code.

This package is publicly available at
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https://github.com/pconn/HierarchicalGOF/releases, and has been archived on

Zenodo (Conn et al. 2018). The code is predominantly model-specific; however, it can be

used as a template for ecologists conducting their own model checking exercises.

Examples

Spatial regression simulations

We examined alternative model checking procedures for spatially explicit regression models

applied to simulated count data. Such models are often used to describe variation in

animal or plant abundance over space and time, and can be used to map abundance

distributions or examine trends in abundance (e.g., Sauer and Link 2011, Conn et al.

2014). A common question when modeling count data is whether there is overdispersion

relative to the commonly chosen Poisson distribution. In ecological data, several sources of

overdispersion are often present, including a greater number of zero counts than expected

under the Poisson (zero inflation; Agarwal et al. 2002), and heavier tails than predicted by

the Poisson (Potts and Elith 2006, Ver Hoef and Boveng 2007). Another important

question is whether there is residual spatial autocorrelation that needs to be taken into

account for proper inference (Legendre 1993, Lichstein et al. 2002).

In this simulation study, we generated count data under a Poisson distribution where

the true mean response is a function of a hypothetical covariate, spatially autocorrelated

error, and additional Gaussian noise. Data simulated in this manner arise from a spatially

autocorrelated Poisson-normal mixture, and can be expected to be overdispersed relative to

the Poisson, in much the same way as a negative binomial distribution (a Poisson-gamma

mixture). We then examined the effectiveness of alternative model checking procedures for
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diagnosing incorrect model specification, such as when spatial independence is assumed.

We also studied properties of model checking procedures when the correct estimation

model is specified.

For a total of 1000 simulation replicates, this study consisted of the following steps:

1. Locate n = 200 points at random in a square study area A1, where A1 ⊂ A2 ⊂ IR2.

Call the set of n = 200 points S.

2. Generate a hypothetical, spatially autocorrelated covariate x using a Matérn cluster

process on A2 (see Appendix S2).

3. Generate expected abundance for all s ∈ S as µ = exp(Xβ + η + ε) where X is an

(n× 2) design matrix, β are regression coefficients, η are spatially autocorrelated

random effects (see Appendix S2), and ε are iid Gaussian errors. The first column of

X is a vector of all 1s, and the second column consists of x.

4. Simulate count data, yi|µi ∼ Poisson(µi), at each of the i ∈ {1, 2, . . . , 200} points.

5. Fit a sequence of three models to each data set according to the following naming

convention:

• Pois0: Poisson model with no overdispersion

Yi ∼ Poisson(exp(x′iβ))
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• PoisMix: A Poisson-normal mixture with iid error

Yi ∼ Poisson(exp(νi))

νi ∼ Normal(x′iβ, τ
−1
ε ),

where τ−1
ε is the error variance

• PoisMixSp: The data-generating model, consisting of a Poisson-normal mixture

with both independent and spatially autocorrelated errors induced by a

predictive process (cf. Banerjee et al. 2008):

Yi ∼ Poisson(exp(νi))

νi ∼ Normal(x′iβ + ηi, τ
−1
ε )

ηi = w′iη̃

η̃ ∼ N (0,Σ).

6. Finally, a number of model checking procedures were employed on each simulated

dataset.

A depiction of the data-generating algorithm (i.e., steps 1-4) is provided in Fig. 3;

mathematical details of this procedure, together with a description of Bayesian analysis

methods used in step 5 are provided in Appendix S2. We now describe model checking

procedures (step 6) in greater detail.
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Posterior predictive p-values

For each dataset and statistical model, we calculated several posterior predictive p-values

with different discrepancy measures. These included χ2, Freeman-Tukey, and

deviance-based omnibus p-values, as well as directed p-values examining tail probabilities

(Table 2). Tail probabilities were examined by comparing the 95% quantile of simulated

and estimated data.

For the Pois0 model, calculation of posterior predictive p-values was straightforward;

posterior predictions (yrep) were simulated from a Poisson distribution, with an

expectation that depends on posterior samples of [β|y]. For the other two models (i.e.,

PoisMix and PoisMixSp), it was less obvious how best to calculate posterior predictions.

For instance, we identified at least three ways to simulate replicated data, yrep for

PoisMixSp (Fig. 4). Initial explorations suggested similar performance of predictions

generated via the schematics in Figs. 4A-B, but the approach in Fig. 4B was used in

reported results. We also examined the relative performance of a “mixed predictive check”

(Marshall and Spiegelhalter 2007, Fig. 4C) for the PoisMixSp model.

To calculate some of the omnibus discrepancy checks (Table 2), one must also specify a

method for calculating the expectation, E(yi|θ). As with posterior predictions, this

calculation depends on what one admits to being a parameter (e.g., are the latent ν

variables part of the parameter set, θ?). We opted to start with the lowest level parameters

possible. For instance, for PoisMix we calculate the expectation relative to the parameter

set θ ≡ {β, τε}; as such, the lognormal expectation is E(yi|θ) = exp(xiβ + 0.5τ−1
ε ). For

PoisMixSp, we compute the expectation relative to θ ≡ {β, τε, τη}, so that

E(yi|θ) = exp(xiβ + 0.5(τ−1
ε + τ−1

η )).
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Pivotal discrepancy measures

We used Alg. 3 (Appendix S1) to conduct PDM tests on each simulated data set and

model type. For all models, we assessed fit of the Poisson stage; for the PoisMix and

PoisMixSp models, we also applied PDM tests on the Gaussian stage (see e.g., Fig. 5).

These tests produce a collection of p-values for each fitted model; one for each posterior

parameter sample (i.e., one for each MCMC iteration). We used the median p-value from

this collection to summarize overall PDM goodness-of-fit.

Sampled predictive p-values

In addition to the median p-value from applying PDM tests, we also sampled a single PDM

p-value at random from each MCMC run. This p-value was used as the sampled predictive

p-value for each fitted model.

K-fold cross-validation

We used a cross-validation procedure to estimate an omnibus p-value for the PoisMix

model, but did not attempt to apply it to the Pois0 or PoisMixSp models owing to high

computational cost. To improve computational efficiency, we modified Alg. 4 (Appendix

S1) to use k-fold cross-validation instead of leave-one-out cross-validation. For each

simulated dataset, we partitioned data into k = 40 “folds” of m = 5 observations each. We

then fit the PoisMix model to each unique combination of 39 of these groups,

systematically leaving out a single fold for testing (each observation was left out of the

analysis exactly once). We then calculated an empirical CDF value for each omitted
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observation i as

ui = n−1

n∑
j=1

I(yrepij < yi) + 0.5I(yrepij = yi).

Here, I(yrepij < yi) is a binary indicator function taking on the value 1.0 if the posterior

prediction of observation i at MCMC sample j (yrepij ) is less than the observed data at i.

The binary indicator function I(yrepij = yi) takes on the value 1.0 if yrepij = yi.

According to PIT theory, the ui values should be uniformly distributed on (0, 1) if the

model being tested does a reasonable job of predicting the data. For each simulated

dataset, we used a χ2 test (with ten equally space bins) to test for uniformity; the

associated p-value was used as an omnibus cross-validation p-value.

Posterior Moran’s I for spatial autocorrelation

To test for residual spatial autocorrelation, we calculated a posterior distribution for the

Moran’s I statistic on residuals for each model fitted to simulated data. For each of

j ∈ 1, 2, . . . , n samples from the posterior distribution (e.g., for each MCMC sample),

Moran’s I was calculated using the residuals y − E(y|θj). For Pois0, we set

E(y|θj) = exp(Xβ); for PoisMix and PoisMixSp, we set E(y|θj) = exp(ν).

Spatial regression simulation results

Posterior predictive p-values were extremely conservative, with p-values highly clustered

near 0.5 under the null case where the data generating model and estimation model were

the same (Fig. 7). In contrast, an unbiased test should generate an approximately uniform

distribution of p-values under the null. Tests using the median p-value associated with
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PDMs were also conservative, as were mixed predictive checks and those calculated relative

to posterior Moran’s I statistics. At least in this example, the mixed predictive check

actually appeared slightly more conservative than posterior predictive checks. Posterior

predictive checks that depended on parameters in the discrepancy function (e.g, χ2,

deviance-based discrepancies) appeared to be slightly more conservative than those that

depended solely on observed and simulated data properties (e.g., the ‘tail’ discrepancy

comparing upper quantiles). In fact, the only p-values that appeared to have good nominal

properties were sampled predictive p-values and cross-validation p-values. We did not

explicitly quantify null properties of cross-validation p-values, but these should be uniform

under the null because the data used to fit and test the model were truly independent in

this case.

For the Pois0 model, the mean directed posterior predictive p-value examining tail

probabilities was 0.09 over all simulated data sets; the means of all other p-values (posterior

predictive and otherwise) were < 0.01. As such, all model checking procedures had high

power to appropriately detect the inadequacy of the basic Poisson model. Examining a

representative plot of over- and under-predictions shows the inadequacy of the Pois0

model: overdispersion is clearly present, and residuals are spatially clustered (Fig. 6).

For the PoisMix model, only the cross-validation test, the Moran I test, and tests based

on PDMs of the Gaussian portion of the model had any power to detect model inadequacy

(Fig. 7). Of these, the sampled predictive p-value had higher power than the p-value based

on the median PDM. The remaining model checking approaches (notably including those

based on posterior predictive checks) had no power to detect model inadequacy (Fig. 7).
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The need for closure: N-mixture models

N -mixture models are a class of hierarchical models that use count data collected from

repeated visits to multiple sites to estimate abundance in the presence of an unknown

detection probability (Royle 2004). That is, counts yij are collected during sampling visits

j = 1, . . . , J , at sites i = 1, . . . , n, and are assumed to be independent binomial random

variables, conditional on constant abundance Ni and detection probability p;

yij ∼ Binomial(Ni, p). Additionally, Ni is assumed to be an independent random variable

with probability mass function [Ni|θ] (e.g., Poisson, negative binomial, Conway-Maxwell

Poisson). The assumption of constant abundance Nij = Ni ∀j is critical for accurate

estimates of Ni and p (Barker et al. 2017). In practice, this assumption implies that a

population at site i is closed with respect to births, deaths, immigration, and emigration,

for all replicate temporal surveys at the site. Violation of this assumption can lead to

non-identifiability of the N and p parameters, or worse, posterior distributions that

converge, but result in Ni being biased high and p being biased low (Kéry and Royle 2016,

Appendix S3).

The appropriateness of the closure assumption has often been determined by judgment

of the investigators, who assess whether time between replicate surveys is short relative to

the dynamics of the system, and whether individual movement is small, compared to the

size of sample plots (e.g., Efford and Dawson 2012; but see Dail and Madsen 2011, for a

frequentist test of this assumption using a model selection approach). As an alternative, we

consider the utility of BMC to assess the closure assumption for N -mixture models. We

first consider a brief simulated example where truth is known. We then examine real data

consisting of counts of sea otters from aerial photographs taken in Glacier Bay National
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Park, southeastern Alaska. For additional model checking examples and other violations of

assumptions of the N -mixture model, including zero-inflation, extra-Poisson dispersion,

extra-binomial dispersion, unmodeled site covariates, and unmodeled detection covariates,

see Kéry and Royle (2016, section 6.8).

Simulation

We examined the most common form of N -mixture model for ecological data,

yij ∼ Binomial(Ni, pi),

Ni ∼ Poisson(λi),

log(λi) = x′iβ,

logit(pi) = w′iα,

(5)

where pi and the expected abundance λi depend on covariates wi and xi, respectively. We

used Eq. (5) to simulate data, with one additional step to induce violation of the closure

assumption. We examined a series of eight cases where the closure assumption was

increasingly violated by letting

Nij ∼ Discrete-Uniform(Ni,j−1(1− c), Ni,j−1(1 + c)),

for j = 2, . . . , J , and c = {0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35}, where c can be

interpreted as the maximum proportion of the population that could move in or out of a

site between j − 1 and j. When c equals zero, Ni,j = Ni,j−1, and thus, Ni,j = Ni, and the

closure assumption is met. For all values of c, we set β = (4, 1)′ and α = (1,−1)′,

i = 1, . . . , n = 300, j = 1, . . . , J = 5. The covariate matrices X and W each had
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dimensions 300× 2, where the first column was all ones, and the second column was

generated by sampling from a Bernoulli distribution with probability 0.5 for all i. We then

fit Eq. 5 to the generated data using a MCMC algorithm written in R. Using the fitted

model, we assessed the effectiveness of posterior predictive and sampled predictive p-values

for diagnosing the closure assumption. When c = 0, the model used to generate the data

was the same as the model used to fit the data, and our model checking procedures should

indicate no lack of model fit. In all other cases, the closure assumption was violated, with

the degree of violation proportional to the value of c. Annotated R code, results, and

figures from the simulation are provided in Appendix S3.

N-mixture results

When the closure assumption was met (c = 0), the estimated posterior distributions

recovered true parameter values well, which was expected (Table 4, Appendix S3). The

posterior predictive p-value was 0.48, and the sampled predictive p-value was 0.27,

suggesting no lack of model fit from either model checking proceedure (Table 4).

When the closure assumption was violated (i.e., c > 0), MCMC chains appeared to

converge (Appendix S3), and convergence was often supported by Gelman-Rubin

diagnostics (Table 4). However, abundance was always overestimated when the closure

assumption was violated, and the true abundance value used to simulate the data was

always outside estimated 95% credible intervals (Table 4). The posterior predictive

p-values did not suggest lack of model fit when c < 0.10, and suggested lack of model fit

otherwise (Table 4). The sampled predictive p-value correctly identified violation in the

closure assumption (assuming a type I error rate of 0.05) for all values of c, for this

simulation (Table 4). The effective sample sizes of the MCMC chains were small due to the
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autocorrelation between abundance and detection probability in the N -mixture model

(Table 4). Mean abundance estimates erroneously increased, with increased violation in the

closure assumption, and confidence intervals failed to cover the true abundance value by

allowing just 5% of the population to move in or out of a site between surveys.

We note that assessing the closure assumption of N-mixture models using posterior

predictive p-values and sampled predictive p-values may be challenging in some areas of

the parameter space, because the biased parameter estimates obtained from fitting data

from an open population can produce data yrepi ∼ [y|θbiased] that are almost

indistinguishable (i.e., similar first and second moments) from the open population data.

Further, other scientifically plausible models where Ni (or λi ) are not identifiable also lead

to data that are indistinguishable from data generated under an N-mixture model (Barker

et al. 2017). Thus, model-checking is an important step in evaluating a model, but is not a

replacement for proper study design.

Estimating sea otter detection probability from aerial photographs

Williams et al. (2017) describe a framework for using aerial photograph data to fit

N -mixture models, where photographs are taken such that a subset of images overlap in

space. The subset of overlapping images provides temporal replication of counts of

individuals at spatial locations that can be used to estimate p in the N -mixture modeling

framework. To assess the utility of their approach, Williams et al. (2017) conducted an

aerial survey in Glacier Bay National Park, southeastern Alaska. During the survey, they

identified groups of sea otters at the surface of the ocean and then flew over the groups of

sea otters multiple times. They captured an image of the group of sea otters during each

flight over the group. In their study, a primary observer operated the camera, and a
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secondary observer watched the groups of sea otters to ensure the closure assumption of

N -mixture models was met. That is, whether sea otters dispersed out of, or into, the

footprint of the photograph among temporal replicates. According to observer notes, 20 of

the 21 groups of sea otters that were photographed multiple times did not appear to

violate the closure assumption. For analysis, Williams et al. (2017) omitted the one site

that appeared to violate the closure assumption. Here, we use Bayesian model checking as

a formal method for assessing the closure assumption of two data sets that are used to fit

the N -mixture model. The first data set is the complete set of 21 observations initially

collected for Williams et al. (2017). The second data set is the data provided in Table 1 of

Williams et al. (2017) which omits the problematic site. The full data set is provided in the

R package HierarchicalGOF (Conn et al. 2018). As in our N -mixture model simulation

study above, we used Bayesian p-values and sampled posterior predictive values to check

our model. We used each data set to fit the model

yij ∼ Binomial(Ni, p),

Ni ∼ Poisson(λi),

λi ∼ Gamma(0.001, 0.001),

p ∼ Beta(1, 1),

using an MCMC algorithm written in R (Appendix S3). The Bayesian p-value for the full

data set (21 sites) was 0.048 and the sampled posterior predictive value was 0.059,

suggesting potential lack of model fit. The Bayesian p-value for the restricted data set used

in Williams et al. (2017) was 0.5630 and the sampled posterior predictive value was 0.823,

suggesting no lack of model fit. Thus, model checking proceedures can provide a formal
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method for examining the closure assumption of N -mixture models for our example, and

corroborates the auxillary information collected by the observers. We note that successful

identification of violation of the closure assumption in the sea otter case should not be

taken as evidence that these will be readily detected in other cases.

Should I stay or should I go? Hidden Markov Models

In this example, we present another assessment of goodness-of-fit for a model that is

quickly becoming popular within the ecological community, the Hidden Markov Model

(HMM; Zucchini and MacDonald 2009). HMMs are a general class of models for time

series data that describe the dynamics of a process in terms of potentially unobserverable

(latent) states that generate observable data according to state-dependent distributions.

Using HMMs, ecologists can construct models that make inference to biologically relevant

‘states’ (e.g., infection status, foraging/not foraging) even when data consist solely of cues

(e.g., field observations, locations of satellite tags).

One implicit (and seldom tested) assumption of HMM models is that the amount of

time spent within a state (the residence time) is geometrically distributed. The geometric

distribution implies a strictly decreasing distribution of residence times, and may not be

realistic for certain ecological time series. For instance, if a hidden state corresponds to

“foraging,” one might expect a dome-shaped distribution of residence times.

In this section, we use BMC to assess the assumption of geometrically distributed

residence times in HMMs applied to California sea lion (CSL) rookery attendance patterns.

We do this by comparing the fit of a Bayesian HMM, as well as the fit of an alternative

Bayesian hidden semi -Markov model (HSMM) that allows more flexible residence time

distributions.
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The HMM is formed by considering a time series of categorical variables, Z1, . . . , ZT

that represent the hidden states. For each t, Zt ∈ {1, . . . , S}, where S is the number of

latent states. The Zt process follows a Markov chain with transition matrix Γt in which the

j, k entry is Γtjk = [Zt = k|Zt−1 = j]. The state process is hidden (at least partially), so,

the researcher is only able to make observation yt with distribution [yt|Zt] and observations

are independent given the hidden states. For n independent individual replications, the

complete likelihood is

[y,Z|ψ,Γ] =
n∏
i=1

T∏
t=1

[yit|Zit,ψt] [Zit|Zi,t−1,Γt],

where ψt is a parameter vector for the observation process. For Bayesian inference within

an MCMC algorithm, we make use of the forward algorithm (see Zucchini and MacDonald

2009) to integrate over the missing state process and evaluate the integrated likelihood

[y|ψ,Γ], thus we can generate a posterior sample without having to sample Z in the

process.

The CSL data are composed of a time series or capture-history of 66 females on San

Miguel I., California over the course of 2 months (61 days) during the pupping season. It

was noted whether or not a previously marked CSL female was seen on a particular day

(i.e., yit = 1, 0, respectively, i = 1, . . . , 66 and t = 1, . . . , 61). The probability of observing a

particular CSL female on a given day depends on her unobserved reproductive state: (1)

pre-birth, (2) neonatal, (3) at-sea foraging, and (4) on-land nursing. The detection

probability for CSL females in the pre-birth state is likely to be low because without a pup

they are not attached to the rookery and can come and go as they please. In the neonatal

state the female remains on shore for approximately 5–7 days to nurse the newborn pup.
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After this period, the female begins foraging trips where it feeds for several days and

returns to nurse the pup. While the CSL female is at-sea it has a detection probability of

0.0. For females that have just given birth, or are returning from a foraging trip, they will

be tending to their pups and are more available to be detected.

To make inference on the attendance patterns of the CSL we used an HMM with the

state transition matrix

Γt = Γ =



γ1 1− γ1 0 0

0 γ2 1− γ2 0

0 0 γ3 1− γ3

0 0 1− γ4 γ4


.

This allows the process to pass from each state to the next in the reproductive schedule

with alternating (3) at-sea and (4) on-land states. Conditioning on the reproductive state,

the observation model is

[yit|Zit] = Bernoulli(ψ(Zit)),

where the detection parameters are constrained as ψ(1) = ψ1, ψ(3) = 0, and

ψ(2) = ψ(4) = ψ2. The parameters ψ1 and ψ2 represent pre-birth and after-birth detection

probability.

To assess model fit, we used the Freeman-Tukey fit statistic

T (y;ψ,Γ) =
∑
t

(√
dt −

√
E[dt]

)2

,
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where dt is the number of observed detections on occasion t and E[dt] is the expected

number of detections given by the HMM model. The Freeman-Tukey statistic is less

sensitive to small expected values than other discrepancy functions (e.g., χ2), which is

important in this example since the expected number of detections is small in early

summer. For day t, the expected number of detections is

E[dt] = nδ′Γt−1ψ,

were δ = (1, 0, 0, 0)′, as all animals start in the pre-birth state, and ψ = (ψ1, ψ2, 0, ψ2)′

Two versions of the HMM model were fit to the data, one in which ψ1 and ψ2 were

constant through time and one in which they were allowed to vary with each occasion

(shared additive time effect). For variable time ψ models, detection was parameterized

logit (ψlt) = logit (ψl) + εt for l = 1, 2, t = 1, . . . , 61, and ε1 = 0 for identifiability. We used

the following prior distributions in this analysis:

• [logit (γk)] ∝ 1

• [ψl] = U(0, 1); l = 1, 2

• [εt] ∝ exp{−|εt|/2}; t = 2, . . . , 61.

The Laplace prior for εt was used to shrink unnecessary deviations to zero.

A collapsed MCMC sampler using the forward algorithm to calculate [y|ψ,γ] was used

so that the Zit process did not have to be sampled. Each sampler was run for 50,000

iterations following burn-in. To calculate the reference distribution for the discrepancy

function, replicated data were simulated at every 10th iteration. After fitting, the posterior

predictive p-value for both models was ≈ 0, which strongly implies lack of fit. Although
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individual detection heterogeneity might be the source of fit issues, examination of Figure 8

suggests a systematic positive bias in the initial days and a negative bias in the middle of

season, indicating possible issues with basic model structure.

The Markov assumption of the latent state process implies that, after landing in state

k, the amount of time spent there is geometrically distributed with parameter 1− γk.

Further, this implies that the most common (i.e., modal) amount of time spent is one time

step. As γk approaches 1, this distribution flattens out, but retains a mode of 1. An

alternative model that relaxes this assumption is the HSMM. In the HSMM, the residence

time is explicitly modeled and at the end of the residence period a transition is made to

another state with probability Γ̃jk. For an HSMM, Γ̃kk = 0 because remaining in a state is

governed by the residence time model. This extra generality comes at a computational

cost; however, Langrock and Zucchini (2011) provide a method for calculating an HSMM

likelihood with an HMM algorithm, such that the forward algorithm can still be used for

inference.

In terms of the CSL analysis, the off-diagonal elements of the HSMM transition matrix

occur at the same locations as in the HMM but are all equal to 1 because after the

residence time has expired, the animal immediately moves to the next stage in the

reproductive schedule (alternating between at-sea and on-land at the end). The residence

time was modeled using a shifted Poisson(λk) distribution; that is, residence time minus 1

is Poisson distributed. We set prior distributions for residence time parameters as

[log λk] ∝ 1. Prior distributions for the detection parameters remained the same as before.

Using the “HSMM as HMM” technique of Langrock and Zucchini (2011), we sampled the

posterior distributions using the same MCMC algorithm as in the HMM case.

The p-value for the Tukey fit statistic under the constant time model was 0.09, so, it
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was an improvement over the HMM models, but still low enough to cause concern.

However, for the time varying ψ HSMM model, the p-value was 0.82, indicating a

substantial improvement in fit. By reducing the probability that an animal would

transition from pre-birth to birth states immediately after the start of the study, the

HSMM model was able to accommodate a similar average residence time to the HMM

without maintaining a mode of 1 (Figure 8), producing a more biologically realistic model.

Discussion

Ecologists increasingly use hierarchical Bayesian models to analyze their data. Such models

are powerful, allowing researchers to represent complex, and often dynamic, ecological

processes. Under the Bayesian calculus, ecologists can partition observation error from

process error, produce detailed predictions, and properly carry through uncertainty when

making inferences. The ability to build complex models is exciting, but does not absolve us

of the need to check whether models fit our data. If anything, complicated models should

be subject to more scrutiny than simple models, as there are more places where things can

go wrong.

One way to ensure a model fits the data is simply to build a sufficiently flexible model.

To take an extreme example, a saturated model (one where there is a separate parameter

for each datum) fits the data perfectly. No one would actually do this in practice; science

proceeds by establishing generalities, and there is no generality implicit in such a model.

Further, there is no way to predict future outcomes. Indeed, models with high complexity

can fit the data well, but may have poorer predictive ability and inferential value than a

model of lower complexity (Burnham and Anderson 2002, Hooten and Hobbs 2015).
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When unsure of the desirable level of complexity or number of predictive covariates to

include in a model, one approach is to fit a number of different models and to average

among the models according to some criterion (e.g., Green 1995, Hoeting et al. 1999, Link

and Barker 2006). Still, unless one conducts model checking exercises, there is no assurance

that any of the models fit the data. Further, there are costs to model averaging, especially

in Bayesian applications where considerable effort is needed to implement an appropriate

algorithm. In such cases, it may make more sense to iterate on a single model (Ver Hoef

and Boveng 2015), and thus, model checking becomes even more important.

We have described a wide variety of Bayesian model checking procedures with the aim

of providing ecologists an overview of possible approaches, including strengths and

limitations. Our intention is not to be prescriptive, but to guide ecologists into making an

appropriate choice. For instance, using simulation, we showed that the popular posterior

predictive p-value (and several other metrics) can have a larger than nominal α value, so

that our ability to “reject” the null hypothesis that data arose from the model is

overstated. In the spatial regression example, the Bayesian p-value often failed to reject

models without spatial structure even when data were simulated with considerable spatial

autocorrelation. The overstated probability of rejection is due to the double use of data,

which are used both to fit the model and also to calculate a tail probability. However, as

shown in the sea otter and California sea lion examples, the posterior predictive p-value

can be useful in diagnosing obvious cases of lack of fit and in producing more biologically

realistic models. Other choices, such as those based on cross-validation, have better stated

properties and would be preferable on theoretical grounds, but may be more difficult to

implement. Regardless of the approach(es) chosen, ecologists can start incorporating BMC

as a standard part of their analysis workflow (e.g., Fig. 1). As in the case of ‘p-hacking’
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(Head et al. 2015), care should be taken to choose appropriate goodness of fit measures

without first peeking at results (i.e. employing multiple discrepancy measures and only

reporting those that indicate adequate fit).

In ecology, simplistic processes are rare: we often expect heterogeneity among

individuals, patchy responses, and variation that is partially unexplained by gathered

covariates. Therein lies an apparent contradiction: we expect lack of fit in our models, but

still want to minimize biases attributable to poor modeling assumptions. From our

perspective, the goal of model checking should not be to develop a model that fits the data

perfectly, but rather to probe models for assumption violations that result in systematic

errors. For instance, employing an underdispersed model (e.g., the Poisson instead of the

negative binomial or the normal instead of the t distribution) will often lead to estimates

that are too precise and to predictions that are less extreme than real world observations.

Basing inference on such a model could have real world implications if used to inform

environmental policy, as it would tend to make decision makers overly confident in their

projections. In the case of basic science, such over-confidence can have real ramifications for

confirmation or refutation of existing theory. It is therefore vital that we do a better job of

conducting and reporting the results of model checks when publishing ecological research.

So far, we have viewed Bayesian model checking primarily as a confirmatory procedure

used to validate (or more precisely, invalidate) modeling assumptions. However, model

checking can be an important tool for scientific discovery. If a model fails to fit the data,

the inquisitive ecologist will want to ask “why?” In some cases, deviations in model

predictions from observations may actually suggest alternative scientific hypotheses worthy

of additional investigation. We thus urge ecologists to view model checking not as a box to

check off on their way to publication, but as an important tool to learn from their data and
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hasten the process of scientific discovery.
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le Table 1. Types and causes of lack of fit in statistical models

Concept Description
Dependent
responses

Many statistical models assume independent response variables. Lack of
independence can have multiple causes, including behavioral coupling
and unmodeled explanatory variables, with the latter often inducing
residual spatial or temporal autocorrelation. The usual result is inflated
sample size, underestimated variance, and overdispersion relative to the
assumed model.

Kurtosis The sharpness of the peak of a probability distribution. Assuming a
probability distribution with too high a kurtosis can increase the impact
of outliers on an analysis.

Nonidentical
distribution

Statistical models often assume that responses are identically distributed
(i.e., have the same underlying probability distribution). However, this
need not be the case. For instance, Heteroskedasticity refers to the case
in which variance changes as a function of the magnitude of the response.

Outliers Outliers consist of observations that are surprisingly different than those
predicted by a statistical model. They can arise because of measurement
error, or because of model misspecification (particularly with regard to
kurtosis). Outliers can often have undue influence on the results of an
analysis (i.e., high leverage), and it may be advantageous to choose mod-
els that are robust to the presence of outliers.

Over-
parameterization

A model is overparameterized whenever two or more combinations of
parameters give the same, optimal solution given the data and assumed
model. If overparameterization is a function of the model only (i.e., could
not be resolved by collection of more data), a particular parameter set
is said to be non-identifiable. If it is overparameterized because data
are too sparse to discriminate between alternative solutions, a particu-
lar parameter set is said to be non-estimable. Overparameterization can
be studied analytically or (perhaps more commonly) through numerical
techniques such as singular value decomposition. It can be difficult to
diagnose in Bayesian applications because it typically results in a multi-
modal posterior distribution, and it can be difficult to discern whether
all the modes have been reached.

Overdispersion A condition where the statistical model is incapable of reproducing the
amount of variation observed in a data set. Three common types of
overdispersion in ecological data are (i) unmodeled heterogeneity, (ii)
dependent responses, and (iii) zero-inflation.

Skewness The amount of asymmetry of an assumed probability density about its
mean.
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Name Definition Comments
A. Omnibus discrepancy functions

χ2 T (y,θ) =
∑

i
(yi−E(yi|θ))2

E(yi|θ)
Often used for count data;
suggested by Gelman et al.
(2014) (among others).

Deviance (D) T (y,θ) = −2 log[y|θ] Used by King et al. (2009)

Likelihood ratio
statistic

T (y,θ) = 2
∑

i yi log( yi
E(yi|θ)

) Used by Lunn et al. (2013)

Freeman-Tukey
Statistic

T (y,θ) =
∑

i(
√
yi −

√
E(yi|θ))2 Less sensitive to small ex-

pected values than χ2; sug-
gested by Kéry and Royle
(2016) for count data.

B. Targeted discrepancy functions
Proportion of zeros T (y) =

∑
i I(yi = 0) Zero inflation check for

count data

Kurtosis checks T (y) = yp Using the pth quantile can
be useful for checking for
proper tail behavior.

C. Pivotal quantities
Y ∼ Exponential(λ) λȲ ∼ Gamma(n, n) Note n is sample size

Y ∼ N (µ, σ2) (Gaus-
sian)

Y−µ
σ
∼ N (0, 1) For mean µ and standard

deviation σ

Y ∼Weibull(α, β) βY α ∼ Exponential(1)

Y from any distribu-
tion

Z = Ȳ−µ
σ/
√
n

D−→ N (0, 1) For large sample size (n),
Z converges in distribution
to a standard normal (Slut-
sky’s theorem) and Z is
termed an “asymptotically
pivotal quantity.”
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Table 3. A summary of Bayesian model checking approaches. For each method, we describe
whether each method (1) tends to be “conservative” (i.e., an overstated α value), (2) whether all
levels of the modeling hierarchy can be evaluated (“all levels”), (3) whether out-of-sample data are
used to assess lack of fit (“out of sample”), and (4) computing cost (“cost”).

Method conservative all levels out of sample cost
Pivotal discrepancy Yes Yes No medium
Posterior predictive check Yes No No low
Prior predictive check No Yes No low
Predictive PIT tests No No Yes high
Sampled predictive p-value No Maybe No low
Graphical Maybe Maybe No low
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Table 4. Results of one simulation for examining the effect of the closure assumption on model
fit in the sea otter example. The notation c represents the maximum proportion of the population
that could move in or out of a site between j − 1 and j, p-value is the posterior predicitive p-value
using a χ-squared goodness-of-fit statistic, sppv is the sampled predictive p-value using the sum
of variance test statistic, Abundance is the mean of the marginal posterior distribution for total
abundance at the 300 sites, the 95% CRI are the 95% credible intervals, GR is the multi-variate
Gelman-Rubin convergence diagnostic, and ESS is the effective sample size of 1,000,000 MCMC
iterations.

c p-value sppv Abundance (truth=50,989) 95% CRI GR ESS
0.00 0.48 0.27 51,200 (49,295, 53,481) 1.00 3,420
0.05 0.40 1.00 60,047 (56,605, 63,868) 1.00 3,260
0.10 0.00 1.00 81,299 (75,223, 89,601) 1.01 3,194
0.15 0.00 1.00 97,066 (89,149, 104,360) 1.13 3,199
0.20 0.00 0.02 117,624 (108,825, 127,007) 1.03 3,184
0.25 0.00 0.01 119,397 (110,477, 125,992) 1.06 3,206
0.30 0.00 0.00 133,797 (124,194, 141,117) 1.10 3,195
0.35 0.00 0.00 139,951 (133,351, 147,086) 1.00 3,213
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FIGURE CAPTIONS

FIGURE 1. A decision diagram describing the steps to adopt when reporting the

results of Bayesian analyses in the literature, particularly when results will be used for

conservation and management or to inform ecological theory. The first step is to formulate

reasonable ecological models, ensuring that the model(s) and associated software is free of

errors and that convergence to the posterior distribution can be achieved (using Markov

chain Monte Carlo, for instance). Following this step, models should be checked against

observed data to diagnose possible model misspecification (the subject of this article).

Assuming no obvious inadequacies, various model comparison or averaging techniques can

be used to compare the predictive performance of alternative models that embody different

ecological hypotheses. Finally, we suggest conducting robustness analyses (prior sensitivity

analyses, simulation analyses where model assumptions are violated) to gauge the

importance of implicit parametric assumptions on ecological inference.

FIGURE 2. Type of model checking procedures used in n = 31 articles published in the

journal Ecology during 2014 and 2015. Articles were found via a Web of Science for articles

including the topic “Bayesian” (search conducted 10/1/2015). Six articles were determined

to be non-applicable (N/A) because they either (1) were simulation studies, or (2) used

approximate Bayesian computation, which is conceptually different than traditional

Bayesian inference (e.g., Beaumont et al. 2002). Of the remaining 25, 20 did not report any

model checking procedures. Five articles reported specific model checking procedures,

which included a combination of Bayesian cross-validation (Cross.val, ), frequentist

software (Non-Bayes), posterior predictive p-values (Pp.pval), and posterior predictive

graphical checks (Pp.gc). Some articles also investigated prior sensitivity which can be

regarded as a form of model checking, but we do not report prior sensitivity checks here.
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FIGURE 3. A depiction of how simulated count data are generated. First, a spatially

autocorrelated covariate is generated using a Matérn cluster process (A) over a region A2.

Second, a spatially autocorrelated random effect is simulated according to a predictive

process formulation (B), where the parent process occurs at a knot level (C; open circles).

The covariate and spatial random effect values combine on the log scale to generate

expected abundance (C). Sampling locations (C; small points) are randomly placed over a

subregion, A1 of the study area, where A1 is defined by the inner box of knot values.

Finally, counts are simulated according to a Poisson distribution (D). Note that counts are

simulated in A1 ⊂ A2 to eliminate possible edge effects.

FIGURE 4. Three possible ways of simulating replicate data to calculate posterior

predictive p-values for the spatial regression simulation study. Solid boxes indicate

parameters or latent variables that occur in the directed graph for observed counts, while

dashed boxes indicate posterior predictions. In (A), replicate data (yrepi ) for a given

observation i depend only upon the latent variable νi, posterior samples of which are

available directly from MCMC sampling. In (B), replicate values of νi are simulated (νrepi )

prior to generating posterior predictions. In (C), an example of a “mixed predictive check,”

spatially autocorrelated random effects are also resimulated (ηrepi ), conditional on the

values of random effects at other sites, η−i, and parameters describing spatial

autocorrelation (i.e., precision τη and exponential decay φ).

FIGURE 5. Example computation of a χ2 discrepancy test using a CDF pivot for a

single posterior sample of a Normal-Poisson mixture model (without spatial

autocorrelation) fit to simulated count data. In this case, the test focuses on the fit of the

the latent variable ν to a Gaussian distribution with mean given by the linear predictor

(i.e., Xβ) and precision τ as specified in the PoisMix model. The test we employed

This article is protected by copyright. All rights reserved. 
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partitions the linear predictor based on 20%, 40%, 60%, and 80% quantiles (solid lines),

and assesses whether the Gaussian CDF in these ranges is uniformly distributed within five

bins. If modeling assumptions are met, there should be a roughly equal number of

observations in each bin. For the data presented here, there appears to underpredictions at

low and high values of the linear predictor.

FIGURE 6. A plot of over- and under-predictions obtained from fitting a basic Poisson

regression model (Pois0) to count data generated from an overdispersed Poisson model

subject to spatial autocorrelation. We plot the spatial location of each data point, and

indicate whether each datum was below (“Under”), above (“Over”) or within (“Neither”) a

95% posterior predictive credible interval (the limits of which were calculated as the 2.5%

and 97.5% quantiles of predicted counts from the Pois0 model). Data are clearly

overdispersed relative to the basic Poisson model, with only 80 of 200 observations within

posterior predictive intervals (we would expect an average of 190 of 200 observations to be

within credible intervals if the model fitted the data well). There is also evidence of

considerable spatial clustering not accounted for with the single explanatory covariate,

with overpredictions occurring in the southwest and underpredictions occurring more often

in the northeast.

FIGURE 7. Histogram bin heights showing the relative frequency of 1000 p-values as

obtained in the spatial regression simulation study (histograms have 10 bins). The dashed

line represents the case where the simulation and estimation model were the same

(PoisMixSp). An unbiased test should have a roughly uniform distribution in this case,

whereas concave distributions indicate that the test is conservative. A greater frequency of

low p-values (e.g., < 0.1) under PoisMix (solid lines) indicate a higher power of rejecting

the PoisMix model, a model that incorrectly omits the possibility of residual spatial

This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le
autocorrelation. The following types of p-values were calculated: k-fold cross-validation

(‘Cross.val’; PoisMix model only), a mixed predictive p-value using the Freeman-Tukey

discrepancy (‘Mixed.FT’; PoisMixSp model only), posterior Moran’s I (‘Moran’), median

pivot discrepancy on the Gaussian (‘Pivot.Gauss’) and Poisson (‘Pivot.Pois’) parts of the

model, a posterior predictive p-value with a χ2 discrepancy function (‘PP.ChiSq’),

posterior predictive p-values using a deviance-based discrepancy calculated relative to the

Poisson (‘PP.Dev.Pois’) and Gaussian (‘PP.Dev.Gauss’) portions of the likelihood, a

posterior predictive p-value calculated with the Freeman-Tukey discrepancy (‘PP.FT’), a

posterior predictive p-value using a 95th quantile discrepancy (‘PP.Tail’), and sampled

predictive p-values relative the Gaussian (‘Sampled.Gauss’) and Poisson (‘Sampled.Pois’)

parts of the model.

FIGURE 8. Observed and expected values for the number of detected animals that

were previously marked. Light and dark blue envelopes represent the 50 and 90th highest

probability density interval for the expected number of detections under the HMM model,

respectively. The red envelopes represent the equivalent intervals for the HSMM model

with shifted Poisson residence time distributions for each state. The gaps in the envelopes

represent days in which resighting did not occur and detection probabilities were fixed to 0.
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