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Abstract
1.	 Species distribution and abundance are critical population characteristics for effi-
cient management, conservation, and ecological insight. Point process models are a 
powerful tool for modelling distribution and abundance, and can incorporate many 
data types, including count data, presence-absence data, and presence-only data. 
Aerial photographic images are a natural tool for collecting data to fit point process 
models, but aerial images do not always capture all animals that are present at a 
site. Methods for estimating detection probability for aerial surveys usually include 
collecting auxiliary data to estimate the proportion of time animals are available to 
be detected.

2.	 We developed an approach for fitting point process models using an N-mixture 
model framework to estimate detection probability for aerial occupancy and abun-
dance surveys. Our method uses multiple aerial images taken of animals at the 
same spatial location to provide temporal replication of sample sites. The intersec-
tion of the images provide multiple counts of individuals at different times. We 
examined this approach using both simulated and real data of sea otters (Enhydra 
lutris kenyoni) in Glacier Bay National Park, southeastern Alaska.

3.	 Using our proposed methods, we estimated detection probability of sea otters to 
be 0.76, the same as visual aerial surveys that have been used in the past. Further, 
simulations demonstrated that our approach is a promising tool for estimating  
occupancy, abundance, and detection probability from aerial photographic surveys.

4.	 Our methods can be readily extended to data collected using unmanned aerial  
vehicles, as technology and regulations permit. The generality of our methods for 
other aerial surveys depends on how well surveys can be designed to meet the  
assumptions of N-mixture models.

K E Y W O R D S

abundance estimation, aerial photographic surveys, availability bias, detection bias, detection 
probability, occupancy estimation, perception bias, point process models, sea otters

1  | INTRODUCTION

Aerial surveys are an important tool for estimating abundance and 
distribution of vertebrate populations. Methods for design and data 
analysis of aerial surveys have been developed to accommodate 

visual observations where observers count animals from aircraft 
(Caughley, 1974; Caughley & Goddard, 1972; Certain & Bretagnolle, 
2008; Goddard, 1967, 1969; Jolly, 1969a, 1969b; Pennycuick & 
Western, 1972; Siniff & Skoog, 1964; Watson, Parker, & Allan, 1969), 
and for photographic survey methods (Bechet, Reed, Plante, Giroux, 
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& Gauthier, 2004; Boyd, 2000; Buckland et al., 2012; Conn et al., 
2015; Leedy, 1948; Leonard & Fish, 1974; Ver Hoef & Jansen, 2014). 
Undercounting animals from aircraft presents a major estimation prob-
lem with both visual and photographic aerial surveys (Caughley, 1974; 
Graham & Bell, 1969). Animals are undercounted because they are not 
available to be counted (e.g. underwater as in Lukacs, Kissling, Reid, 
Gende, & Lewis, 2010, termed availability bias), or observers miss an-
imals that are available to be counted (termed perception bias; Marsh 
& Sinclair, 1989). Aerial images improve perception bias, but not nec-
essarily availability bias (Bayliss & Yeomans, 1990; Frederick, Hylton, 
Heath, & Ruane, 2003; Gibbs, Woodward, Hunter, & Hutchinson, 
1988; Leonard & Fish, 1974). For example, many seabirds and marine 
mammals are virtually certain to be detected in images if they are at 
the surface of the water, but animals may be diving beneath the sur-
face of the water and unavailable to be photographed (Buckland et al., 
2012; Conn et al., 2014). Aerial images alone typically do not provide 
sufficient information for estimating availability, and auxiliary informa-
tion is usually required to estimate absolute abundance. For example, 
activity budgets or time spent diving underwater can be estimated 
from telemetry devices including VHF transmitters, satellite-linked 
transmitters, or time-depth recorders (Bechet et al., 2004; Conn et al., 
2014; Heide-Jørgensen, Laidre, Borchers, Samarra, & Stern, 2007). 
Often, aerial image data are easily obtainable, but auxiliary data may 
be more challenging to acquire due to financial, logistical, or regulatory 
constraints, precluding estimation of availability. Even when auxiliary 
information can be collected, there is often a disparate scale of infer-
ence between auxiliary data and aerial image data, potentially intro-
ducing a variety of statistical challenges for modelling and inference 
(Gotway & Young, 2002). Further, it is difficult to determine whether 
correction factors based on behavioural data (e.g. dive times) are  
appropriate because corrections may not apply to animals engaged in 
different activities such as feeding or resting; activities that might be 
difficult to characterize from an aircraft (Hiby & Lovell, 1998).

Another method for estimating availability is to use multiple air-
craft in tandem, where observers in each aircraft count animals inde-
pendently (Hiby & Lovell, 1998). Using aircraft in tandem is twice as 
expensive as using one aircraft, and transects of each aircraft might 
not overlap due to error in GPS locations and misaligned flight paths. 
Further, methods for using aircraft in tandem have relied on identify-
ing individual animals (i.e. duplicates seen by each aircraft) which is 
often problematic (Hiby & Lovell, 1998).

In light of these constraints, we describe a point process model 
that leverages an N-mixture framework for simultaneously estimating 
detection probability, occupancy, and abundance from aerial images 
(Royle, 2004). The N-mixture model fits naturally within the frame-
work of a point process model. The N-mixture model is advantageous 
in that it does not rely on data auxiliary to aerial images. Data required 
to fit N-mixture models can be collected from a single aircraft, and 
individual animals need not be uniquely identified. In addition, ae-
rial photographic images provide a permanent record that is available 
for independent verification, may be used for automated detection, 
and allows for quantification of habitat covariates (Martin et al., 
2012; McNabb, Womble, Prakash, Gens, & Haselwimmer, 2016). 

Photographic sampling methods can also be extended to unmanned 
aerial vehicles, which are relatively new low-cost platforms that can 
be used to quantify wildlife and their habitats (Hodgson, Kelly, & Peel, 
2013; Sweeney et al., 2015).

An ecological application motivating the methods we present in-
volves the use of aerial photographic survey methods for estimating 
the distribution and abundance of sea otters (Enhydra lutris kenyoni) 
in Glacier Bay National Park (GBNP), southeastern Alaska. Sea otters 
were recently identified as a vital sign for long-term monitoring in 
GBNP because of their role as a keystone species and their influence in 
structuring nearshore marine communities (Estes & Palmisano, 1974). 
Data on sea otter abundance in GBNP were formerly collected using 
design-based, visual aerial surveys, where observers counted sea otters 
along randomly selected transects (Bodkin & Udevitz, 1999; Williams 
et al., 2017). Detection probability for the design-based survey was 
estimated by conducting intensive searches at 469 randomly-selected 
locations from the design-based survey that contained sea otters. At 
these random sites, observers first conducted the design-based survey 
along the transect and counted individuals along the strip. The plane 
then deviated off the transect to conduct intensive searches which en-
tailed circling a group of otters five times at a given speed and altitude 
(Bodkin & Udevitz, 1999). The number of circles was based on the es-
timated dive duration or aerobic dive limit of sea otters. The additional 
survey effort allowed observers to obtain more precise counts of sea 
otters, including individuals that were underwater and not available for 
detection during the original design-based phase. The National Park 
Service is developing an aerial survey method that extends previous 
survey methods with the specific objectives of (1) improving safety 
and reducing risk associated with aerial surveys, (2) decreasing cost 
and optimizing efficiency, (3) increasing the number of pilots capable 
of conducting the surveys, (4) creating a permanent record that can 
be independently verified, (5) reducing observer bias, (6) quantifying 
associated habitat covariates from imagery, (7) developing a platform 
and survey design that is capable of being extended to unmanned ae-
rial vehicles, and (8) improving precision of occupancy and abundance 
estimates. The use of aerial images improves objectives 1–7, relative 
to the original surveys. However, objective 8 relies on accurate and 
precise estimation of detection probability. Thus, we developed field-
based methods and an associated statistical framework for simulta-
neously estimating occupancy, abundance, and detection probability 
of animals using only aerial images, where a subset of images overlap 
in space. We demonstrate our approach by first applying our frame-
work to simulated data of sea otters in GBNP. We conducted a pilot 
study in which we assessed our ability to collect temporally replicated 
images of spatially referenced sites containing sea otters. Finally, we 
estimated abundance and detection probability of our sampled sites.

2  | MATERIALS AND METHODS

Individuals in a population exist as points in space and time and there-
fore can be modelled as a spatio-temporal point process (Figure 1; 
Hefley & Hooten, 2016). A point process is a stochastic process that 
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governs the location of a set of points {si} in some set D ⊂ ℝ
d (Cressie 

& Wikle, 2011; Diggle, 2013; Moller & Waagepetersen, 2003). We 
consider the two-dimensional space D ⊂ ℝ

2 that describes a study 
area of interest during time interval [0, T]. We let s = (latitude, longi-
tude)′ represent any 2 × 1 vector of coordinates in D, and the set of 
coordinates {si ∀i} represents the locations of animals in D. A point 
process N(·) is characterized by counting the number of points (e.g. 
animals) that belong to various measurable subsets A ⊂ D ⊂ ℝ

2 (e.g. A 
represents the subset of area in D captured by aerial images). Let 
N(A, t) represent a count of the true number of animals in A during 
time t. A fundamental quantity of interest of a point process is the 
expected abundance in A. The expected abundance can be calculated 
in terms of a locally integrable intensity function λ(s, t). The intensity 
function describes the expected abundance of an infinitely small area 
ds centred at point s. The expected abundance of the bounded subset 
A from time t to t + Δt can be obtained by integrating the intensity 
function over A from time t to t + Δt,

If λ(s,t) varies in space and/or time, and is deterministic, and we as-
sume N(A1, t) and N(A2, t) are independent whenever A1 ∩ A2 = ∅, 
where ∩ represents the intersection, then N(A, t) is an inhomogeneous 
Poisson point process and

(Cressie & Wikle, 2011; Moller & Waagepetersen, 2003). Similarly, 
if λ(s, t) is a stochastic process, then N(A, t) is known as a Cox pro-
cess (Cox, 1955). We consider inhomogeneous Poisson processes for 
the remainder of the paper; a number of authors provide details on 
more general point processes that could be used in our framework 
(e.g. Baddeley, Rubak, & Turner, 2015; Banerjee, Carlin, & Gelfand, 
2014; Cressie & Wikle, 2011; Illian, Penttinen, Stoyan, & Stoyan, 
2008; Moller & Waagepetersen, 2003). An important derived quan-
tity of Equation 1 is the probability that N(A, t) > 0 (i.e. the occupancy 
probability, ϕ(A, t)). Useful distribution models predict both occupancy 
and abundance (Oppel et al., 2012). The spatio-temporal occupancy 
probability is

(see Hefley & Hooten, 2016; Williams et al., 2017).
A set of n aerial images taken at locations {ci}ni=1 capture informa-

tion on bounded subregions Ai, and therefore can be used to charac-
terize the point process (Cressie & Wikle, 2011). We denote counts 
of animals on an image of site Ai taken during time t as y(Ai, t), where 
the area captured by the aerial image is denoted as |Ai|, and in practice ∑n

i=1
�Ai� ≪ �D�. Counts of individuals are usually obtained by examin-

ing images post-flight, and summing the number of individuals within 

λ(A, t)=E(N(A, t))=∫
A
∫
t+Δt

t

λ(s, t)dtds<∞.

(1)N(A, t)∼Poisson(λ(A, t))

(2)ϕ(A, t)=P(N(A, t)<0)=1−e
−λ(A,t)

F I G U R E  1    Depiction of aerial survey of domain D, with image locations A1, …, An. Overlapping images provide temporal replication at sites 
where the images intersect
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the image (see Field and lab methods, below). Counts often contain false 
negatives; some proportion of animals within Ai will not appear on im-
ages or are missed when investigators count the animals. Therefore, 
we adopt the most commonly used model for false negatives,

where p(Ai, t) is the detection probability, potentially varying in space 
and time. If occupancy is a state variable of interest, Equation 3 re-
duces to I{y(Ai ,t)>0} ∼Bernoulli(ϕ(Ai, t)), where I{y(Ai , t)>0} is an indica-
tor function that equals one when y(Ai, t) > 0, and zero otherwise 
(Hefley & Hooten, 2016). Note that p(Ai, t) is a composite parameter 
of both the probability of an observer counting an individual on the 
image, conditional on it being available to be counted (p1(Ai, t)), and 
the probability an individual is available to be counted (p2(Ai, t)). That 
is, p(Ai, t) = p1(Ai, t)p2(Ai, t). If aerial images have sufficient resolu-
tion such that the observer detection probability p1(Ai, t) = 1, then 
p(Ai, t) = p2(Ai, t). For our application, we assume p(Ai, t) = p2(Ai, t). 
When this assumption is not valid, other techniques could be used to 
estimate p1(Ai, t) when individuals are counted on images (e.g. double 
observer methods as used in Buckland et al., 2012). Following the ter-
minology of Berliner (1996), Equation 3 is a data model and Equation 
1 is a process model (e.g. an inhomogeneous Poisson process model), 
and the hierarchical formulation of the model is

where x(c, t) is a vector of covariates for locations c, time t, and β is a 
vector of parameters to be estimated.

To estimate detection probability, p, we assume a subset of Ai and 
Ak(k∈; i ≠ k) intersect (Figure 1). That is, an aerial image of subregion 
Ai taken at time j = j1 overlaps an image of subregion Ak taken at time 
j = j1 + Δj, where Δj is sufficiently small so it can be assumed that the 
point pattern realization is static, and in practice, Δj ≪ Δt (cf., primary 
and secondary sampling periods sensu, Kendall & Nichols, 1995, for t 
and j, respectively). We can view the union of Ai and Ak as 3 distinct 
bounded sites; Ai ∩ Ac

k
, Ac

i
∩ Ak, and Ai ∩ Ak (Figure 1), where 

“c” rep-
resents the complement. Counts of individuals (or alternatively, oc-
cupancy status) in the subregion Ai ∩ Ak can be obtained from each 
image (Figure 1). Counting individuals from each image in the intersec-
tion Ai ∩ Ak provides temporal replication, y(Ai ∩ Ak, j, t), j = 1, …, J, and 
can be used to estimate p in an N-mixture model framework (Royle, 
2004). That is, assuming Δj is sufficiently small to ensure the popu-
lation being sampled is closed with respect to movement, mortality, 
and recruitment, and conditional on N(Ai ∩ Ak, t), y(Ai ∩ Ak, j, t) may be 
viewed as independent and identically distributed binomial random 
variables

(Royle, 2004). Thus, the Poisson process assumes that when 
A1 ∩ A2 = ∅, N(A1), and N(A2) are independent and Poisson, conditional 

on λ(A1) and λ(A2), respectively. The N-mixture model assumes that 
when A1 ∩ A2 ≠ ∅, counts of individuals in the intersection are inde-
pendent and binomial, conditional on N(A1 ∩ A2) and p(A1 ∩ A2).

It is not necessary to collect intersecting images at all spatial loca-
tions, but collecting intersecting images in a variety of environmental 
conditions provides sufficient information to estimate how detection 
probability may vary in response to spatial or temporal covariates. For 
example, heterogeneity in detection probability could be modeled as

where w(Ai ∩ Ak, t) are covariates associated with detection probabil-
ity collected at Ai∩Ak at time t, and α are parameters to be estimated. 
To simplify notation in what follows, we assume that all sites (i.e. Ai, 
Ak, Ai ∩ Ak, Ac

i
∩ Ak, Ai ∩ Ac

k
) are represented with i.

The parameters of our model (p, α, β) can be estimated using either 
Bayesian methods (Royle & Dorazio, 2008), or maximum likelihood meth-
ods (Royle, 2004). Assuming a Bayesian hierarchical specification of the 
model, the full Bayesian posterior distribution of Equations 4 and 5 is

where we use the square-bracket notation [a|b] to represent the prob-
ability density or mass function of variable a given variable b (Gelfand 
& Smith, 1990).

3  | APPLICATION: SEA OTTERS IN 
GLACIER BAY NATIONAL PARK

We conducted a simulation study to evaluate our model (Appendix 
S1). After our simulation study, we developed and implemented field 
methods to assess the logistics of collecting the necessary data re-
quired to fit our model (Appendix S2). Although Equations 4 and 6 
are described in sufficient generality to incorporate relevant spatio-
temporal processes for time t = 1, …, T, to simplify demonstration, our 
example assumes t = 1.

3.1 | Simulated data

We simulated sea otter abundance data across GBNP (Appendix S1) 
using the model described in Equation 6, and included an intercept 
and four covariates to associate abundance to local conditions in 
GBNP. The covariates were ocean depth, distance to shore, slope of 
the ocean floor, and shoreline complexity. We based the relationship 
(positive or negative) between abundance intensity and parameter 
values on Williams et al. (2017). We also allowed detection probability 
to vary in space. We simulated values of w(si) using a Bernoulli distri-
bution with success probability equal to 0.5. Specifically,

(3)y(Ai, t)∼Binomial(N(Ai, t),p(Ai, t)),

(4)

y(Ai, t)∼Binomial(N(Ai, t),p(Ai, t)),

N(Ai, t)∼Poisson(λ(Ai, t)),

λ(Ai, t)=∫Ai
∫
t+Δt

t

λ(c, t)dtdc,

log(λ(c, t))=x(c, t)��

y(Ai ∩ Ak, j, t)∼Binomial(N(Ai∩ Ak, t),p(Ai∩ Ak, t))

(5)logit(p(Ai∩ Ak, t))=w(Ai∩ Ak, t)
��,

(6)[N,�, �|Y]∝
n∏

i=1

T∏

t=1

{ Ji∏

j=1

{[y(Ai, j, t)|N(Ai, t),�]}[N(Ai, t)|�]
}
[�, �],

log(λ(si))=−2.4+0.75depth(si)−0.75distance(si)+0.4slope(si)

−0.4complexity(si),

logit(p(si))=1+0.5w(si).
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We simulated 8,895 images from 50 transects placed randomly 
across GBNP, and selected 100 random locations containing sea 
otters where one additional replicate image was taken (Appendix 
S1). We then fit a Bayesian hierarchical N-mixture model to the 
simulated data. We assumed vague prior distributions for all param-
eters. After fitting the model, we compared the estimated posterior 
distributions to the parameter values that were used to simulate 
the data. We also plotted the true expected abundance (λ(s)) and 
occupancy (ϕ(s)) and the estimated expected abundance and oc-
cupancy (Figure 3). All posterior distributions had good coverage 
of true parameter values (Figure 2), and the estimated expected 
abundance and occupancy probability represented the truth well 
(Figure 3).

3.2 | Field and lab methods

We developed a pilot study to assess the ability of obtaining inter-
secting aerial images of groups of sea otters in GBNP. We obtained 
aerial digital imagery to estimate abundance and detection of sea 
otters. Three separate aerial photographic surveys were conducted 
during July and September 2016 in Glacier Bay from a de Havilland 
Canada DHC-2 Beaver single-engine high-winged aircraft (Ward 
Air Inc., Juneau, AK, USA). The aircraft was flown at c. 213–250 m 
at 157–166 km/hr. Overlapping digital photographic images of sea 
otter groups were taken directly under the plane using a vertically-
aimed digital camera (Nikon D810, 36.3 megapixel; Shinagawa, 
Tokyo, Japan) with an 85 mm focal length lens (Zeiss F/1.4 ZF.2). 

F I G U R E  2    Marginal estimated posterior distributions (black lines) of parameters in aerial sea otter abundance model fit to simulated data. 
Red lines indicate values used to simulate data (see Appendix S1)
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The camera was attached to a tripod head and mounted to a ply-
wood platform that was secured in the belly porthole of the aircraft. 
The camera captured an image every second, using a digital timer 
(Nikon MC36) that was attached to the camera and operated by 
the primary observer. A second observer monitored movement of 
individual sea otters to determine if any sea otters were dispersing 
or moving in or out of the photograph footprint. After one transect 
was complete (i.e. one survey occasion), the pilot attempted to fly 
the same transect (using a combination of a GPS and visual cues) 
to obtain replicate images. At one site, otters dispersed in varying 
directions after the initial photograph, and therefore, we removed 
it from analysis because it would potentially violate the closure as-
sumption. The speed–altitude combination did not appear to have 
an observable influence on sea otter behaviour.

An onboard global positioning system (GPS; Garmin 76 CSX; 
Olathe, KS, USA), with an external antenna, was used to record the 
track line and position of the plane (latitude, longitude, altitude) at 
1-s intervals. Each digital image (7,360 × 4,912 pixel JPG) covered c. 
90 m × 60 m at the surface of the water with a 1.64 cm pixel resolu-
tion. The rate of image capture and dimensions of the photographed 
area provided a linear mosaic of overlapping images with c. 30 m of 
overlap between adjacent images.

The latitude, longitude, and altitude from the track line were down-
loaded and written to the EXIF headers of each digital image to perma-
nently embed the location data into each image using RoboGeo v6.3 
(Pretek, Incorporated, Christiana, TN, USA). All images were reviewed 
using ACDSee Pro 9 (ACD Systems International, Incorporated , Seattle, 
WA, USA). From each survey occasion at each site, one image was se-
lected based on its clarity and location of sea otters with respect to the 
boundary of the photographed area. Although images within one survey 
occasion created a linear mosaic of intersecting images and could be used 
as temporal replicates, we selected one image from each survey occasion 
to use in our analysis. Selecting one image from each survey occasion 
increased Δj between temporal replicates, increasing the probability that 
individual sea otters would make state transitions from available to un-
available (or vice versa; i.e. so subsequent images were more likely to be 
independent). Images where a raft of sea otters was in the centre of the 
image were preferred to help ensure closure assumptions were reason-
ably met. The best image for each group of sea otters and sampling occa-
sion was selected and imported into Count Clusters (Dynamic Ventures, 
Incorporated, Cupertino, CA, USA), a custom software program that can 
be used for counting objects in digital images. An experienced observer 
marked each sea otter in the image. The total number of individuals per 
image as well as attribute data from each digital image including date, 

F I G U R E  3    Left: True expected 
abundance (λ(s); top) and occupancy 
probability (ϕ(s); bottom) used to simulate 
abundance data for sea otters in Glacier 
Bay National Park, southeastern Alaska, 
USA. Right: The estimated expected 
abundance and occupancy probability using 
simulated aerial photographs. The square-
root of λ(s) was used to highlight spatial 
variation
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time, latitude, longitude, and altitude were exported to a file for analysis. 
All analyses were conducted in R version 3.2.3 (R Core Team, 2013).

Our field-based methods were associated with a pilot study with 
limited spatial coverage, thus, we did not attempt to estimate abun-
dance for all of GBNP. We collected 60 images from 20 locations con-
taining sea otters (Table 1). We focused our estimates of detection 
probability and abundance in the sites we surveyed. We visited each 
site multiple times. However, visiting each site multiple times is not 
required, and monitoring designs can be made more efficient by cou-
pling the information from sites with multiple visits and sites that are 
visited once, provided the same standards that are used to collect and 
analyse overlapping photographs are used in all photographs.

The estimated posterior distributions for detection probability and 
abundance for these data are provided in Figure 4. The mean of the 
posterior distribution, optimal for squared-error loss (e.g. Williams & 
Hooten, 2016), for detection probability from the aerial image data 
from 20 sites equaled 0.76, the same as the mean of the posterior 
distribution from the original design-based survey of sea otters esti-
mated from 469 intensively searched sites (Williams et al., 2017). We 
assessed model fit using Bayesian p-values (Hobbs & Hooten, 2015). 
We used the χ2 goodness-of-fit discrepancy function for calculating 
Bayesian p-values (Gelman, Carlin, Stern, & Rubin, 2014). The Bayesian 
p-value was .52, suggesting no lack of model fit.

4  | DISCUSSION

We presented a spatio-temporal point process model, in combination 
with a novel application of N-mixture models fitted to digital aerial 
survey data when detection probability is <1 due to animals being 
unavailable for detection. We used this framework to simultaneously 
estimate detection probability, occupancy probability, and total abun-
dance based on an intensity surface that is a realization of a continu-
ous spatio-temporal inhomogeneous Poisson process. Applying our 
model to both simulated data and real data on sea otters collected 
during a pilot study demonstrated that this framework is a promising 
tool for estimating occupancy, abundance, and detection probabil-
ity from aerial image surveys. Additionally, the spatio-temporal point 
process model is sufficiently flexible to accommodate count data, 
presence-absence data, presence only data (Dorazio, 2014; Fithian, 
Elith, Hastie, & Keith, 2015; Hefley & Hooten, 2016), and spatio-tem-
poral dependence in ecological processes (Cressie & Wikle, 2011).

Model estimates based on simulated data recovered true parame-
ters well. This was not surprising, as previous simulation studies have 
shown that N-mixture models usually perform well for estimating 
abundance and detection probability for a variety of conditions with 
varying level of detection probability, few replicate temporal counts, 
and few sites (Couturier, Cheylan, Bertolero, Astruc, & Besnard, 2013; 
Dennis, Morgan, & Ridout, 2015; Hunt, Weckerly, & Ott, 2012; Kéry, 
Royle, & Schmid, 2005; McCaffery, Nowak, & Lukacs, 2016; Yamaura, 
2013). The novel application in our simulation was the use of the in-
tersection of two overlapping spatial sites as temporal replication. 
Although the formulation of the model has been used for other pur-
poses, our application extends it to new situations involving survey 
design. For example, if known-radius point counts (e.g. Henry, Haddad, 
Wilson, Hughes, & Gardner, 2015) are conducted to collect data to es-
timate abundance, sites could be chosen such that neighbouring sites 

T A B L E   1  Counts of sea otters from aerial images taken at 20 
sites in Glacier Bay National Park, Alaska. Sampling occasion refers to 
the number of times a site was flown over in an aircraft and a picture 
was taken of the same group of sea otters

Sampling occasion

1 2 3 4 5

Site 1 20 17 15 15

Site 2 60 62 58 55

Site 3 15 16 15 15

Site 4 8 12

Site 5 9 10

Site 6 19 20 19 19

Site 7 17 17 17 13

Site 8 52 53

Site 9 162 171

Site 10 37 40

Site 11 144 138

Site 12 21 25 17

Site 13 20 19 18 18

Site 14 86 83 87 91

Site 15 47 46

Site 16 21 20

Site 17 19 12

Site 18 2 1 1

Site 19 83 85 83 85 83

Site 20 55 48 52

F I G U R E  4    Marginal estimated posterior distributions of 
detection probability and abundance from aerial image data collected 
at 20 sites containing sea otters in Glacier Bay National Park, AK, 
USA (see Appendix S2)
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intersect to make temporal replication more efficient than replicating 
visits to sites over multiple days.

The general applicability of these methods for aerial images de-
pends on whether sample sites are closed with respect to movement, 
mortality, and recruitment. Mortality and recruitment are unlikely 
during the course of an aerial survey for most populations. However, 
the movement assumption may not be valid for highly mobile animals. 
In temporally replicated counts, we assume that the set of animals that 
occupy a site (but not necessarily observed in the site), is unchanged. 
Thus, if animals move in or out of the area in the time difference Δj be-
tween images, the closure assumption will be violated and estimates 
of detection probability could be biased depending on how animals 
disperse in and out of sites. If dispersal is random, bias will likely be 
small. If animals systematically disperse away from a site after an initial 
survey, perhaps in response to the aircraft, then bias may be large, 
unless this dispersal can be modelled. For example, if it is possible 
to uniquely identify some individuals in repeated images, movement 
models could be used to explicitly account for animal movement 
among photographs (e.g. Hooten, Johnson, McClintock, & Morales, 
2017; Royle & Young, 2008).

Another assumption of the N-mixture model is that organisms are 
detected independently of each other (Dorazio, Martin, & Edwards, 
2013; Martin et al., 2011; Royle & Dorazio, 2008). This assumption 
may be violated if behaviour among organisms is correlated, and af-
fects their probability of being detected (e.g. manatees surfacing for 
air in groups; Martin et al., 2011). Martin et al. (2011) developed an 
extension to the N-mixture model for accounting for correlated be-
haviour and non-independent detection of individuals. Our goodness-
of-fit evaluation for the sea otter data suggested no lack of model fit, 
and therefore, there was no evidence that this assumption was vio-
lated. However, alternative models (e.g. negative binomial; Ver Hoef & 
Boveng, 2007) can be implemented when violations, or lack of model 
fit occur.

There are at least two design considerations that can help prevent 
violations in the closure assumption. The first consideration applies 
mainly to populations that congregate in groups (e.g. rafts of sea ot-
ters, flocks of birds, pods of whales, rafts of pinipeds), or are relatively 
immobile among replicate surveys, and is to use a camera, lens, and 
altitude combination that produces images that have a larger footprint 
(cf., plot size; Efford & Dawson, 2012). A larger footprint may provide 
a buffer around a group of animals, requiring more time for individu-
als to move out of the footprint (or move from outside the footprint 
into the footprint). In our application, sea otter movement between 
subsequent photographs was small, relative to the footprint of the 
photographs we used. Further, we selectively chose photographs with 
groups of sea otters located in the centre of photographs, reducing 
the opportunity sea otters had to leave the area captured by photo-
graphs. Thus, although it is possible that there was some movement 
into or out of areas captured by replicate photographs, our survey 
design minimized this possibility, (which was corroborated by obser-
vations from the secondary observer), and any violation of this as-
sumption was small (the secondary observer never witnessed it), and 
likely negligible for estimating abundance and detection probability 

of sea otters in GBNP. The second consideration is to reduce time 
between survey occasions (i.e. decrease Δj) limiting the time animals 
have to move out of the footprint. During our pilot survey, it required 
c. 2–3 min to fly over a group of sea otters twice. However, because 
we acquired several images each time we flew over sea otters, and 
neighbouring images contained overlap, we could have used these 
intersecting regions to provide temporal replication, minimizing the 
probability that any otter moved out of the area captured by the inter-
secting images. However, using multiple images within a transect may 
result in neighbouring images that are not independent, and therefore 
we selected one image from each transect. Additionally, multiple cam-
eras can be mounted on an aircraft such that one faces forward and 
one faces backward, programmed on a timer such that they capture 
an image of the same area at different times in the same flight pass. 
Similarly, cameras could be placed side-to-side to increase horizontal 
size of footprints (see Conn et al., 2016, fig. 2, for a picture of this 
setup). Extensions that use this framework for video surveys are also 
possible.

Another design consideration for the application of N-mixture 
models to aerial survey data is the time it requires for animals to 
switch between the states of unavailable to available. That is, whether 
Δj is sufficiently large so that intersecting photographs are indepen-
dent, conditional on N(Ai). Sea otters are good candidates for these 
models because they are relatively shallow divers with short dive du-
rations (mean dive duration was 85 s; Bodkin, Esslinger, & Monson, 
2004). Further, the calculated aerobic dive limit (cADL) for sea otters 
is <5 min (cADL for juveniles = 3.62 min; cADL for adults = 4.82 min; 
Thometz, Murray, & Williams, 2015). Gibbs et al. (1988) used aerial 
images to estimate the number of great blue heron (Ardea herodias) 
nests. Many nests were unavailable for detection due to vegetation 
obstructing nests from the line-of-sight of the camera. Because it is 
unlikely that vegetation would change within the course of a survey, 
allowing additional nests to be identified in subsequent images, the 
estimate of availability for these data might be biased high, and there-
fore, nest counts biased low.

Aerial images are often taken along irregular flight paths that do 
not necessarily form a rectangular grid that partitions a domain of in-
terest, making traditional design-based estimates of abundance diffi-
cult (Figure 1; Ver Hoef & Jansen, 2014). Our proposed methods used 
a model-based approach for estimating abundance based on a spatial 
point process that can be integrated, resulting in a Poisson regression 
model that matches the scale of the data, and subsequently, could be 
incorporated in an N-mixture model. In our application, the abundance 
intensity was determined by the parameters (β) using generalized lin-
ear regression. The model-based approach provides additional flexibil-
ity, compared to design-based estimates, that allows incorporation of 
spatial, temporal, or spatio-temporal autocorrelation (Cressie, 1993; 
Cressie & Wikle, 2011; Diggle, 2013), and computationally efficient 
methods for fitting them (Hefley et al., 2017; Hooten, Garlick, & 
Powell, 2013; Ver Hoef & Jansen, 2014).

In our study, we achieved temporal replication by identifying a 
group of sea otters at a location, and then conducting multiple flights 
over the group and taking images. We used this method to reduce the 
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possibility of spatial displacement by sea otters. Any flight plan could 
be selected to obtain temporal replication of sites, provided it reason-
ably meets the assumptions of the model. Additionally, the precision 
and robustness of parameter estimates, with respect to the number 
of replicate sites conducted, and the amount of overlap obtained in 
photographs, can be evaluated using a simulation that is specific to 
individual study systems.

Finally, if detection probability is likely to change between survey 
periods (e.g. each year), temporal replication of images can be incorpo-
rated into each survey using randomization, or model-based optimiza-
tion (e.g. Hooten, Wikle, Sheriff, & Rushin, 2009; Wikle & Royle, 1999, 
2005). Alternatively, if detection probability is not likely to change 
through time, a pilot study could be conducted to examine availability 
bias, and then used as an informative prior distribution for future aerial 
surveys, precluding the necessity to conduct replicate surveys during 
each sampling period.

ACKNOWLEDGMENTS

We thank Andy Royle and three anonymous reviewers for valuable 
insight about this work. Funding was provided by the National Park 
Service Inventory & Monitoring Program and Glacier Bay National 
Park & Preserve Marine Management Fund. Heather Coletti, Dan 
Esler, George Esslinger, and Dan Monson provided technical and lo-
gistical support. We are grateful to Louise Taylor-Thomas for process-
ing imagery and Dennis Lozier for piloting the aircraft. Yitzchak Ehrlich 
provided expertise and assistance with image software. Any use of 
trade, firm, or product names is for descriptive purposes only and does 
not imply endorsement by the U.S. Government.

AUTHORS’ CONTRIBUTIONS

P.J.W., M.B.H., J.N.W., and M.R.B. designed the research. J.N.W. 
and M.R.B. organized field studies. J.N.W. and P.J.W. collected data. 
P.J.W. and M.B.H. contributed new analytic tools. P.J.W. developed 
simulations and analysed data. P.J.W., M.B.H., J.N.W., and M.R.B. 
wrote the paper.

DATA ACCESSIBILITY

All data used in the manuscript are reported in Table 1.

REFERENCES

Baddeley, A., Rubak, E., & Turner, R. (2015). Spatial point patterns: 
Methodology and applications with R. Boca Raton, FL: CRC Press.

Banerjee, S., Carlin, B. P., & Gelfand, A. E. (2014). Hierarchical modeling and 
analysis for spatial data. Boca Raton, FL: CRC Press.

Bayliss, P., & Yeomans, K. (1990). Use of low-level aerial photography to 
correct bias in aerial survey estimates of magpie goose and whistling 
duck density in the northern territory. Australian Wildlife Research, 17, 
1–10.

Bechet, A., Reed, A., Plante, N., Giroux, J. F., & Gauthier, G. (2004). 
Estimating the size of the greater snow goose population. Journal of 
Wildlife Management, 68, 639–649.

Berliner, L. M. (1996). Hierarchical Bayesian time series models. In K. M. 
Hanson & R. N. Silver (Eds.), Maximum entropy and Bayesian methods 
(pp. 15–22). Dordrecht, NL: Kluwer Academic Publishers.

Bodkin, J. L., Esslinger, G. G., & Monson, D. H. (2004). Foraging depths 
of sea otters and implications to coastal marine communities. Marine 
Mammal Science 20, 305–321.

Bodkin, J. L., & Udevitz, M. S. (1999). An aerial survey method to estimate 
sea otter abundance. In G. W. Garner, S. C. Amstrup, J. L. Laake, B. F. J. 
Manly, L. L. McDonald, & D. G. Robertson (Eds.), Marine mammal survey 
and assessment methods (pp. 13–26). Leiden, NL: A. A. Balkema.

Boyd, W. S. (2000). A comparison of photo counts versus visual esti-
mates for determining the size of snow goose flocks. Journal of Field 
Ornithology, 71, 686–690.

Buckland, S. T., Burt, M. L., Rexstad, E. A., Mellor, M., Williams, A. E., & 
Woodward, R. (2012). Aerial surveys of seabirds: The advent of digital 
methods. Journal of Applied Ecology, 49, 960–967.

Caughley, G. (1974). Bias in aerial survey. The Journal of Wildlife Management 
38, 921–933.

Caughley, G., & Goddard, J. (1972). Improving the estimates from inaccu-
rate censuses. The Journal of Wildlife Management, 36, 135–140.

Certain, G., & Bretagnolle, V. (2008). Monitoring seabirds population in ma-
rine ecosystem: The use of strip-transect aerial surveys. Remote Sensing 
of Environment, 112, 3314–3322.

Conn, P. B., Johnson, D. S., Ver Hoef, J. M., Hooten, M. B., London, J. M., 
& Boveng, P. L. (2015). Using spatiotemporal statistical models to es-
timate animal abundance and infer ecological dynamics from survey 
counts. Ecological Monographs, 85, 235–252.

Conn, P. B., Moreland, E. E., Regehr, E. V., Richmond, E. L., Cameron, M. 
F., & Boveng, P. L. (2016). Using simulation to evaluate wildlife survey 
designs: Polar bears and seals in the chukchi sea. Royal Society Open 
Science, 3, 150561.

Conn, P. B., Ver Hoef, J. M., McClintock, B. T., Moreland, E. E., London, J. M., 
Cameron, M. F., ... Boveng, P. L. (2014). Estimating multispecies abun-
dance using automated detection systems: Ice-associated seals in the 
bering sea. Methods in Ecology and Evolution 5, 1280–1293.

Couturier, T., Cheylan, M., Bertolero, A., Astruc, G., & Besnard, A. (2013). 
Estimating abundance and population trends when detection is low 
and highly variable: A comparison of three methods for the hermann's 
tortoise. The Journal of Wildlife Management, 77, 454–462.

Cox, D. R. (1955). Some statistical methods connected with series of 
events. Journal of the Royal Statistical Society. Series B (Methodological), 
2, 129–164.

Cressie, N. (1993). Statistics for spatial data. New York, NY: 
Wiley-Interscience.

Cressie, N., & Wikle, C. K. (2011). Statistics for spatio-temporal data. 
Hoboken, NJ: John Wiley & Sons.

Dennis, E. B., Morgan, B. J., & Ridout, M. S. (2015). Computational aspects 
of n-mixture models. Biometrics, 71, 237–246.

Diggle, P. J. (2013). Statistical analysis of spatial and spatio-temporal point 
patterns. Boca Raton, FL: CRC Press.

Dorazio, R. M. (2014). Accounting for imperfect detection and survey 
bias in statistical analysis of presence-only data. Global Ecology and 
Biogeography, 23, 1472–1484.

Dorazio, R. M., Martin, J., & Edwards, H. H. (2013). Estimating abundance 
while accounting for rarity, correlated behavior, and other sources of 
variation in counts. Ecology, 94, 1472–1478.

Efford, M. G., & Dawson, D. K. (2012). Occupancy in continuous habitat. 
Ecosphere, 3, 1–15.

Estes, J. A., & Palmisano, J. F. (1974). Sea otters: Their role in structuring 
nearshore communities. Science, 185, 1058–1060.

Fithian, W., Elith, J., Hastie, T., & Keith, D. A. (2015). Bias correction in spe-
cies distribution models: Pooling survey and collection data for multiple 
species. Methods in Ecology and Evolution, 6, 424–438.

Frederick, P. C., Hylton, B., Heath, J. A., & Ruane, M. (2003). Accuracy 
and variation in estimates of large numbers of birds by individual 



1688  |    Methods in Ecology and Evolu
on WILLIAMS et al.

observers using an aerial survey simulator. Journal of Field Ornithology, 
74, 281–287.

Gelfand, A. E., & Smith, A. F. (1990). Sampling-based approaches to calcu-
lating marginal densities. Journal of the American Statistical Association, 
85, 398–409.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2014). Bayesian data 
analysis, vol. 2. Boca Raton, FL: Chapman & Hall/CRC.

Gibbs, J. P., Woodward, S., Hunter, M. L., & Hutchinson, A. E. (1988). 
Comparison of techniques for censusing great blue heron nests. Journal 
of Field Ornithology, 59, 130–134.

Goddard, J. (1967). The validity of censusing black rhinoceros populations 
from the air. African Journal of Ecology, 5, 18–23.

Goddard, J. (1969). Aerial census of black rhinoceros using stratified ran-
dom sampling. African Journal of Ecology, 7, 105–114.

Gotway, C. A., & Young, L. J. (2002). Combining incompatible spatial data. 
Journal of the American Statistical Association, 97, 632–648.

Graham, A., & Bell, R. (1969). Factors influencing the countability of ani-
mals. East African Agricultural and Forestry Journal, 34, 38–43.

Hefley, T. J., Broms, K. M., Brost, B. M., Buderman, F. E., Kay, S. L., Scharf, H. 
R., ... Hooten, M. B. (2017). The basis function approach for modeling 
autocorrelation in ecological data. Ecology, 98, 632–646.

Hefley, T. J., & Hooten, M. B. (2016). Hierarchical species distribution mod-
els. Current Landscape Ecology Reports, 1, 87–97.

Heide-Jørgensen, M. P., Laidre, K., Borchers, D., Samarra, F., & Stern, H. 
(2007). Increasing abundance of bowhead whales in west greenland. 
Biology Letters, 3, 577–580.

Henry, E. H., Haddad, N. M., Wilson, J., Hughes, P., & Gardner, B. (2015). 
Point-count methods to monitor butterfly populations when traditional 
methods fail: A case study with miami blue butterfly. Journal of Insect 
Conservation, 19, 519–529.

Hiby, L., & Lovell, P. (1998). Using aircraft in tandem formation to estimate 
abundance of harbour porpoise. Biometrics 54, 1280–1289.

Hobbs, N. T., & Hooten, M. B. (2015). Bayesian models: A statistical primer for 
ecologists. Princeton, NJ: Princeton University Press.

Hodgson, A., Kelly, N., & Peel, D. (2013). Unmanned aerial vehicles (uavs) 
for surveying marine fauna: A dugong case study. Plos One, 8, e79556.

Hooten, M. B., Garlick, M. J., & Powell, J. A. (2013). Computationally ef-
ficient statistical differential equation modeling using homogeniza-
tion. Journal of Agricultural, Biological and Environmental Statistics, 18, 
405–428.

Hooten, M. B., Johnson, D. S., McClintock, B. T., & Morales, J. M. (2017). 
Animal movement: Statistical models for telemetry data. Boca Raton, FL: 
CRC Press.

Hooten, M. B., Wikle, C. K., Sheriff, S. L., & Rushin, J. W. (2009). Optimal 
spatio-temporal hybrid sampling designs for ecological monitoring. 
Journal of Vegetation Science, 20, 639–649.

Hunt, J. W., Weckerly, F. W., & Ott, J. R. (2012). Reliability of occupancy and 
binomial mixture models for estimating abundance of golden-cheeked 
warblers (Setophaga chrysoparia). The Auk, 129, 105–114.

Illian, J., Penttinen, A., Stoyan, H., & Stoyan, D. (2008). Statistical analysis 
and modelling of spatial point patterns, vol. 70. Hoboken, NJ: John Wiley 
& Sons.

Jolly, G. (1969a). Sampling methods for aerial censuses of wildlife popula-
tions. East African Agricultural and Forestry Journal, 34, 46–49.

Jolly, G. (1969b). The treatment of errors in aerial counts of wildlife popula-
tions. East African Agricultural and Forestry Journal, 34, 50–55.

Kendall, W. L., & Nichols, J. D. (1995). On the use of secondary capture- 
recapture samples to estimate temporary emigration and breeding 
proportions. Journal of Applied Statistics, 22, 751–762.

Kéry, M., Royle, J. A., & Schmid, H. (2005). Modeling avian abundance 
from replicated counts using binomial mixture models. Ecological 
Applications, 15, 1450–1461.

Leedy, D. L. (1948). Aerial photographs, their interpretation and suggested 
uses in wildlife management. The Journal of Wildlife Management, 12, 
191–210.

Leonard, R. M., & Fish, E. B. (1974). An aerial photographic technique 
for censusing lesser sandhill cranes. Wildlife Society Bulletin, 2, 
191–195.

Lukacs, P. M., Kissling, M. L., Reid, M., Gende, S. M., & Lewis, S. B. (2010). 
Testing assumptions of distance sampling on a pelagic seabird. The 
Condor, 112, 455–459.

Marsh, H., & Sinclair, D. F. (1989). Correcting for visibility bias in strip tran-
sect aerial surveys of aquatic fauna. The Journal of Wildlife Management, 
53, 1017–1024.

Martin, J., Edwards, H. H., Burgess, M. A., Percival, H. F., Fagan, D. E., 
Gardner, B. E., ... Rambo, T. J. (2012). Estimating distribution of hid-
den objects with drones: From tennis balls to manatees. PLoS One, 7, 
e38882.

Martin, J., Royle, J. A., Mackenzie, D. I., Edwards, H. H., Kery, M., & Gardner, 
B. (2011). Accounting for non-independent detection when estimating 
abundance of organisms with a Bayesian approach. Methods in Ecology 
and Evolution, 2, 595–601.

McCaffery, R., Nowak, J. J., & Lukacs, P. M. (2016). Improved analysis of lek 
count data using n-mixture models. The Journal of Wildlife Management, 
80, 1011–1021.

McNabb, R. W., Womble, J. N., Prakash, A., Gens, R., & Haselwimmer, C. E. 
(2016). Quantification and analysis of icebergs in a tidewater glacier 
fjord using an object-based approach. Plos One, 11, e0164444.

Moller, J., & Waagepetersen, R. P. (2003). Statistical inference and simulation 
for spatial point processes. Boca Raton, FL: CRC Press.

Oppel, S., Meirinho, A., Ramírez, I., Gardner, B., OConnell, A. F., Miller, P. I., 
& Louzao, M. (2012). Comparison of five modelling techniques to 
predict the spatial distribution and abundance of seabirds. Biological 
Conservation, 156, 94–104.

Pennycuick, C., & Western, D. (1972). An investigation of some sources of 
bias in aerial transect sampling of large mammal populations. African 
Journal of Ecology, 10, 175–191.

R Core Team. (2013). R: A language and environment for statistical computing. 
Vienna, Austria: R Foundation for Statistical Computing.

Royle, J. A. (2004). N-mixture models for estimating population size from 
spatially replicated counts. Biometrics, 60, 108–115.

Royle, J. A., & Dorazio, R. M. (2008). Hierarchical modeling and inference in 
ecology: The analysis of data from populations, metapopulations, and com-
munities. Cambridge, MA: Academic Press.

Royle, J. A., & Young, K. V. (2008). A hierarchical model for spatial cap-
ture-recapture data. Ecology, 89, 2281–2289.

Siniff, D. B., & Skoog, R. O. (1964). Aerial censusing of caribou using strati-
fied random sampling. The Journal of Wildlife Management, 28, 391–401.

Sweeney, K. L., Helker, V. T., Perryman, W. L., LeRoi, D. J., Fritz, L. W., Gelatt, 
T. S., & Angliss, R. P. (2015). Flying beneath the clouds at the edge of 
the world: Using a hexacopter to supplement abundance surveys of 
steller sea lions (Eumetopias jubatus) in alaska. Journal of Unmanned 
Vehicle Systems, 4, 70–81.

Thometz, N. M., Murray, M. J., & Williams, T. M. (2015). Ontogeny of 
oxygen storage capacity and diving ability in the southern sea otter 
(Enhydra lutris nereis): Costs and benefits of large lungs. Physiological 
and Biochemical Zoology, 88, 311–327.

Ver Hoef, J. M., & Boveng, P. L. (2007). Quasi-Poisson vs. negative binomial 
regression: How should we model overdispersed count data? Ecology, 
88, 2766–2772.

Ver Hoef, J. M., & Jansen, J. K. (2014). Estimating abundance from counts 
in large data sets of irregularly spaced plots using spatial basis func-
tions. Journal of Agricultural, Biological and Environmental Statistics, 20, 
1–27.

Watson, R., Parker, I., & Allan, T. (1969). A census of elephant and other 
large mammals in the mkomazi region of northern Tanzania and south-
ern Kenya. African Journal of Ecology, 7, 11–26.

Wikle, C. K., & Royle, J. A. (1999). Space: Time dynamic design of envi-
ronmental monitoring networks. Journal of Agricultural, Biological and 
Environmental Statistics, 4, 489–507.



     |  1689Methods in Ecology and Evolu
onWILLIAMS et al.

Wikle, C. K., & Royle, J. A. (2005). Dynamic design of ecological monitoring 
networks for non-gaussian spatio-temporal data. Environmetrics, 16, 
507–522.

Williams, P. J., & Hooten, M. B. (2016). Combining statistical inference and 
decisions in ecology. Ecological Applications, 26, 1930–1942.

Williams, P. J., Hooten, M. B., Womble, J. N., Esslinger, G. G., Bower, M., & 
Hefley, T. J. (2017). An integrated data model to estimate spatio-tem-
poral occupancy, abundance, and colonization dynamics. Ecology, 98, 
328–336.

Yamaura, Y. (2013). Confronting imperfect detection: Behavior of binomial 
mixture models under varying circumstances of visits, sampling sites, 
detectability, and abundance, in small-sample situations. Ornithological 
Science, 12, 73–88.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the 
supporting information tab for this article.

How to cite this article: Williams PJ, Hooten MB, Womble JN, 
Bower MR. Estimating occupancy and abundance using aerial 
images with imperfect detection. Methods Ecol Evol. 
2017;8:1679–1689. https://doi.org/10.1111/2041-210X.12815

https://doi.org/10.1111/2041-210X.12815

