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Introduction

Understanding ecological complexity based on empir-
ical data has led to the proliferation of advanced 
statistical methods for ecological inference. Coinciding 
with these developments is a need for formal, rigorous 
methods for using these analyses to make decisions. 
Subsequent to a statistical investigation, an investigator 
has several choices to make. Consider two scenarios: 
(1) an investigator deciding how to summarize the results 
of an analysis to report in a scientific journal or technical 
report, and (2) a manager deciding how the results of a 
statistical analysis translate into a choice of management 
action. In each example, the decision maker is trying to 
achieve a (perhaps implicit) objective. Minimizing the 
amount of information lost from the data to the reported 
statistic is a possible objective in the first scenario, and 
maximizing some resource is a possible objective in the 
second scenario. Statistical theory alone does not pro-
vide guidance for these choices. In the first scenario, 
suppose the investigator has collected survival data on 
a critically endangered species and estimated a posterior 

distribution for the probability of survival. Standard 
practice suggests the posterior mean or median is a 
conventional statistic to report. Is this choice of estima-
tor arbitrary, or is it explicitly linked to an objective? 
In the second scenario, suppose a refuge manager has 
collected data on abundance of a species of concern and 
its relationship to prescribed fire frequency. The man-
ager would like to use the information to maximize 
cumulative abundance of the species through time. 
We consider statistical decision theory (SDT) as a single 
framework to address both of these questions, and more 
generally, to formally link decisions to three sources of 
information: statistical results from a data set, knowl-
edge of the consequences of potential choices (i.e., loss), 
and prior beliefs about a system (Fig. 1).

Decision theory is broadly defined as the theory of 
objective-oriented behavior in the presence of choices. 
SDT is a sub-field of decision theory concerned with using 
the results of a statistical investigation to reduce uncer-
tainty of a decision problem with the ultimate goal of 
helping a decision maker choose the best available action 
under a specified objective (Berger 1985). The theory and 
application of SDT originated from a shift in the field of 
statistics in which statistical inference was regarded as a 
branch of decision theory; the focus of inference was the 
decision to be made (Neyman , and Pearson 1928, 1933, 
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Ramsey 1931, Wald 1950, Savage 1954, Ferguson 1967, 
Lindley 1971). On the importance of this movement, 
Savage (1962:161) said, “decision theory is the best and 
most stimulating, if not the only, systematic model of 
statistics." Although there were critics of the decision-
theoretic model of statistical inference (e.g., Fisher 1955, 
Cox 1958, Tukey 1960, Birnbaum 1977), the shift had 
profound impacts on the field of statistics. Two impacts 
of particular relevance for ecological decisions were the 
revitalization of inverse probability from Bayes and 
Laplace (Ramsey 1931, De Finetti 1937, Savage 1954, 
DeGroot 1970, Lindley 1971) and the development of 
methods to combine data with utility theory to inform 
decisions (Wald 1950, Lindley 1953, Barnard 1954, 
DeGroot 1970, Akaike 1973). Bayesian probability 
re-emerged as a viable paradigm, in part, because of its 
compatibility with decision theory (Savage 1954, 1962). 
Decision theory fits naturally within Bayesian inference, 
and SDT and Bayesian inference are often presented in 
the same volume to be studied concurrently (e.g., Berger 
1985, Pratt et  al. 1995). We focus mainly on Bayesian 
SDT due to the added flexibility and its coherence with 
decision analysis, with the exception of basic definitions 
of frequentist SDT and its relationship to Bayesian SDT. 
We discuss the relationship between frequentist and 
Bayesian SDT to provide basic reference information and 
to highlight similarities and differences in paradigms. 
Bayesian methods have proven to be important tools for 
ecological inference. The additional concept of loss in an 
analysis allows Bayesian methods to be naturally extended 
to assist ecological decision making (Dorazio and Johnson 
2003).

We summarize SDT and demonstrate its application 
for ecologists who must base decisions on data, in the 

presence of uncertainty, and prior information. We also 
emphasize the concept of loss and its implications for 
ecological science, statistical inference, and decision 
making in general. We focus on two scales of problems 
that are relevant for ecology: optimal point estimation 
and optimal natural resource management. Optimal 
point estimation has been covered in many statistical 
texts (e.g., Berger 1985, Casella and Berger 2002, 
Lehmann and Casella 1998), but has been underrepre-
sented in the ecological literature. Optimal point estima-
tion is important not only for choosing estimates to 
report in scientific journals, but for natural resource 
management, directly. Many natural resource decisions 
are based only on point estimates and do not consider 
estimates of uncertainty (e.g., Pacific Flyway Council 
1999). In these cases, the choice of point estimator affects 
which management actions are ultimately implemented. 
Dorazio and Johnson (2003) discussed SDT as a frame-
work for decision making in natural resource manage-
ment and provide an example of using SDT for waterfowl 
management. Our objective was to provide a general 
overview of the concepts of SDT, their applicability to 
point estimation, and how the traditional use of SDT for 
point estimation can be extended to address problems in 
natural resource management. We summarize SDT for 
point estimation and provide an example of a natural 
resource management problem that involves selecting a 
prescribed fire burn rotation for Henslow's Sparrows 
(Ammodramus henslowii).

Basic Elements of SDT

Following Berger (1985), we begin with an intro-
duction to the basic elements of SDT. The premise of 

Fig. 1.  Schematic of statistical decision theory (SDT). Conventional statistical inference (shaded region) is often performed 
without explicitly considering decisions or associated loss, whereas SDT formally incorporates decisions and loss into the framework. 
Equation 4 demonstrates the combination of the likelihood, the prior, and the loss.
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SDT is that a decision maker chooses from a set of 
potential actions. The quality of the choice depends on 
an unknown, true state of nature; certain choices will be 
better for the decision maker under different potential 
states of nature. We assume the uncertainty in the state 
of nature is epistemic and reducible through scientific 
investigation. The exact nature of the uncertainty is 
problem specific. We focus on the uncertainty inherent 
in our ability to characterize the true state of nature in 
our examples (e.g., uncertainty in the value of a 
parameter), but SDT is sufficiently general to include 
other types of uncertainty (e.g., structural uncertainty of 
a process related to how a system will respond to deci-
sions). Concise treatment of SDT requires defining 

notation associated with its basic elements (Table 1). The 
true and unknown state of nature is represented by θ and 
all possible states of nature are represented by Θ. The list 
of potential actions a decision maker can choose is rep-
resented by , in which each potential action is repre-
sented by a. For example, suppose a natural resource 
manager must decide on a prescribed fire regime for a 
refuge containing eight grasslands. The manager must 
decide on a fire-return interval of 1, 2, 3, or 4 years to be 
applied to all grasslands to be implemented in a man-
agement plan that will span the next 20 years. The 
manager would like to maximize the cumulative number 
of Henslow's Sparrows on the refuge during that period. 
The manager can select the fire-return interval (i.e., 
a ∈ {1,2,3,4}) as an action. The cumulative number of 
Henslow's Sparrows over 20 years (i.e., Na,�) that will 
result given each management action is unknown and a 
function of model parameters θ.

The link between statistical inference and decision 
making occurs through the specification of a loss function, 
L(θ,a), not to be confused with a likelihood function, 
(Fig.  1). Loss functions are synonymous with objective 
functions or utility functions (loss functions = negative 
utility functions) in other fields. Loss functions map 
actions and states of nature to a real number that repre-
sents some (not necessarily monetary) cost associated 
with the action and true state of nature. Mathematically, 
a loss function returns a value for every combination of 
the potential true states of nature θ ∈ Θ and any action 
a∈ before a decision is made (Fig. 2). A loss function 
can be associated with any decision (including functions 
of parameters and/or predictions). Returning to our 
example, suppose fire is critical for Henslow's Sparrow 
habitat, but implementing burns is expensive. Decreasing 
the burn interval increases the financial cost of Henslow's 
Sparrow management. Thus, a manager can express loss 
as a function of the burn interval a, and the unknown 
cumulative abundance Na,� for the upcoming 20-year 
management period, a function of θ.

When a decision maker conducts a statistical investiga-
tion to provide information about θ, the data gathered 
are represented by y. The data are assumed to be a reali-
zation of a random variable Y having a probability dis-
tribution that depends on θ (i.e., [y|θ]). All possible 
realizations of the data (the sample space) are represented 
by . In our example, the refuge manager, in preparation 
for choosing a management strategy, has recorded the 
population size of Henslow's Sparrows in each of the 
eight grasslands for four years following a prescribed fire 
on each grassland. Therefore, the manager possesses infor-
mation describing how annual abundance is associated 
with the covariate x = summers-post-burn (1, 2, 3, or 4). 
This information will be used to inform the cumulative 
20-year abundance for any of the potential burn inter-
vals. Finally, the Bayesian framework formally incorpo-
rates a distribution for the prior probability distribution 
of θ (i.e., [θ]), thereby incorporating information other 
than the sample information and a loss function (e.g., 

Table 1.   Notation and description of components in statisti-
cal decision theory (SDT)

Notation Description

θ The unknown, true state of nature
Θ The support of θ (i.e., the potential values that θ 

could be)
 The sample space or support of the data
Y A random variable of interest to the decision 

maker that depends on θ (i.e., a function from 
the sample space  into the real numbers)

y Data; the data are realizations of the random 
variable Y from a scientific investigation carried 
out to provide information to the decision 
maker about the value of θ to assist in the 
decision to be made

a An action the decision maker can take
 The set of potential actions or action set from 

which a decision maker can choose
δ(y) A decision rule that is a function of the observed 

data y. A decision rule is a map from the 
observed data to the action a. For example, if a 
scientific investigation is performed to inform 
the decision and Y=y is the realization of the 
sample information, then the resulting decision 
to be made is δ(y)=a. Decision rules are a 
frequentist concept

L(θ,δ(y)) 
or 
L(θ,a)

The loss function; a function determined by the 
decision maker that describes the loss if action a 
is taken (or decision rule δ(y) is used) and θ is 
the true state of nature. The loss function is 
defined for all (θ,a)∈Θ×. The loss function is 
analogous to a utility function (i.e., loss = 
-utility) or objective function in decision theory

[y|θ] The probability density or mass of the data y 
given the true state of nature (or parameter) θ

[θ] The prior distribution of θ
[θ|y] The posterior distribution of θ given the data y
R(θ,δ) Frequentist risk; a function of a decision rule 

(δ(y)) and θ that describes the expected loss to 
the decision maker if (s)he used δ(Y) a large 
number of times, for varying realizations of 
Y=y, and for any possible value of θ ∈ Θ

ρ(a) Bayesian expected loss; the expected loss of each 
action a, given the loss function and either a 
prior distribution (a problem with no data) or a 
posterior distribution

r(a) Bayesian risk; the Frequentist risk averaged over 
a prior distribution
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information from other studies on the response of 
Henslow's Sparrow abundance to prescribed fire; Herkert 
and Glass 1999). SDT proceeds by combining these 
sources of information to identify actions that minimize 
the expected loss of an action (i.e., risk).

Expected Loss (Risk)

A loss function is a function of the action of a decision 
maker and the unknown θ. Because θ is unknown at the 
time of decision, it is impossible to calculate the actual 
loss that will be incurred for each action. Instead, the 
expected loss, or risk, is calculated for each action and 
for each possible value of θ in the frequentist view (Fig. 
3A). A decision maker proceeds by selecting the action 
with the smallest expected loss (in the Bayesian case) or 
some function of the expected loss (in the frequentist case; 
e.g., the minimax function). We begin our description of 
expected loss by describing decision rules and frequentist 
risk and then extend these concepts to Bayesian risk.

Frequentist risk

A decision rule δ(y) is a function that maps the sample 
space of y to an action a. That is, for any realization of 

the data y that could occur, the decision rule prescribes 
the action to take. For example, a frequentist hypothesis 
test is an example of a decision rule. Frequentist risk is 
the evaluation of how much the decision maker would 
expect to lose if (s)he used the decision rule δ(y) repeatedly 
for different realizations of Y=y. Because θ is unknown, 
risk is calculated for each possible θ  ∈  Θ (but see fre-
quentist arguments against this approach in Spanos 
2012). Risk is defined, for the continuous case, as the 
convolution of loss and likelihood, or alternatively, the 
expectation with respect to y over all samples,

where the term [y|θ] in Eq. 1 represents the probability 
density or mass function of y given the value of θ. 
Equation 1 is calculated for all values of θ and all decision 
rules δ(y). Because θ is unknown at the time of decision, 
the decision maker's choice of decision rule is equivocal 
(Fig. 3A). Frequentist risk provides information about 
the best choice of action for each θ ∈ Θ, and thus, after 
the risk is found, the decision maker is tasked with 
choosing among the decisions that are optimal for any 
given value of θ (i.e., admissible decision rules; Fig. 3A). 
A decision maker can use prior information (implicitly) 

(1)R(�,�)=Ey(L(�,�(y)))=� L(�,�(y))[y|�]dy,

Fig. 2.  (A) Squared-error loss function for the action (i.e., choice of estimator) a=50. If the true value of θ=75 (dotted vertical 
line), then L(θ=75, a=50)=625. Similarly, if a=75, L(75,75)=0. (B) Asymmetric loss function with weights w(θ) for a=0.3 and a=0.7, 
an estimate of population growth rate for a critically endangered species. If a overestimates θ (i.e., θ<a) the loss is larger than if θ>a, 
representing preference for a conservative estimate of θ.
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to identify which range of θ is most likely and choose the 
corresponding decision rule. Alternatively, the decision 
maker can consider various concepts of frequentist 
choice to narrow the decision space (e.g., admissibility, 
unbiasedness, equivariance, minimaxity).

Many frequentist and Bayesian inference procedures 
can be formally framed as expected loss (e.g., null 
hypothesis significance testing). In doing so, an investiga-
tor can use the techniques of decision theory to make a 
choice (Berger 1985, Ferguson 1967, Lehmann and 
Romano 2008).

Bayesian expected loss and Bayesian risk

Bayesian expected loss is different than frequentist 
risk, but mathematically related. In Bayesian expected 
loss, an investigator does not consider loss over hypo-
thetical samples from the population to evaluate uncer-
tainty in θ. Instead, an investigator assigns a probability 
distribution to θ. The probability distribution can be 
assigned without collecting new data (i.e., by using only 
the prior probability distribution [θ]), or by combining 
new data, a likelihood (i.e., [y|θ]), and a prior distribution 

using Bayes’ Theorem to calculate the posterior distri-
bution [θ|y]. Whether an investigator uses new data or 
not, Bayesian expected loss provides an explicit mech-
anism for inclusion of a prior distribution for the 
unknown θ; a component that is usually present, but not 
explicitly included in frequentist SDT. Bayesian expected 
loss using only prior information is defined as the average 
loss with respect to prior information,

For the Bayesian case, we replace δ(y) with a to dif-
ferentiate between Bayesian and frequentist expected 
loss. For a decision problem in which a scientific inves-
tigation has been conducted to collect data on the process 
affecting the decision, the Bayesian expected loss, or 
posterior expected loss is defined as

where [θ|y] relies on an assumed prior [θ] and likelihood 
[y|θ]. A difference between Bayesian expected loss and 
frequentist risk is that, while frequentist risk results in a 

(2)E�L(�,a)=∫
Θ

L(�,a)[�]d�.

(3)�(a)=E�|yL(�,a)=∫
Θ

L(�,a)[�|y]d�,

Fig. 3.  (A) Frequentist risk functions for two actions. Action 1 has lower risk for values of θ<3, while action 2 has lower risk 
for values of θ>3. Because the value of θ is unknown, the optimal action is equivocal. Also shown is a prior distribution for θ 
(i.e., [θ]) representing the a priori probability of θ. The prior can be used implicitly for frequentist risk, or explicitly for Bayesian risk. 
(B) Convolution of frequentist risk functions with prior distribution shown in (A) using Eq. 5. Bayes’ risk for each action is found 
by integrating each line with respect to θ. Bayes’ rule is the action with the smaller Bayes’ risk. The dashed line has a smaller integral 
and is therefore Bayes’ rule.
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value for risk for each possible value of θ ∈ Θ, Eq. 2 or 
3 result in a single value of expected loss for each action 
and are not functions of θ after θ is integrated out. Thus, 
after a decision maker completes an analysis of Bayesian 
expected loss for each action, (s)he can select the action 
with the smallest expected loss, called Bayes’ rule (not to 
be confused with Bayes’ theorem). Bayes’ rule is defined 
as the action or decision rule that minimizes the Bayesian 
expected loss: a∗ =argmina(�(a)). Note that the average 
frequentist risk over a prior distribution is

and therefore, the unknown θ is integrated out of the 
equation. Using Fubini's theorem, and the fact that [y|θ]
[θ]=[θ|y][y], we can rearrange Eq. 4 into the form

The value in the large square brackets of Eq. 5 is the 
Bayesian expected loss, and Eq. 5 is known as Bayes risk. 
It can be shown that, in most non-pathological situa-
tions, minimizing the Bayesian expected loss also mini-
mizes Eq. 5 (Berger 1985). Heuristically, Bayesian risk 
can be thought of as the frequentist risk averaged over 
the prior.

Identifying Bayes rule provides a method for selecting 
among actions that formally incorporates data from a 
statistical investigation, prior knowledge about the pro-
cess, and the loss incurred for each decision as specified 
in the loss function (Fig. 1). This methodology can be 
applied to almost any situation that requires a defensible 
decision and allows loss to be reasonably captured in a 
loss function. Next, we demonstrate the application of 
SDT to two separate decision problems.

Point estimation using Bayesian posterior distributions

First, we discuss the class of problems dealing with 
finding optimal estimators for Bayesian point estimation. 
Suppose we collect data y to learn about an unknown 
parameter θ. Bayesian inference is concerned with finding 
the probability distribution of θ given the data (i.e., the 
posterior distribution = [θ|y]). To summarize the pos-
terior distribution, we often reduce the information in 
the posterior to a point estimate. In fact, many natural 
resource management decisions are based exclusively on 
a point estimate (e.g., Pacific Flyway Council 1999, 
Williams, 2016). The point estimate for θ can be any 
value, but ideally, we want to minimize the loss of infor-
mation when using a point estimate to summarize a dis-
tribution. An application of SDT provides a method for 
selecting the optimal point estimator associated with a 
posterior distribution. Based on the principles described 
in Expected loss (risk): Bayesian expected loss and risk, 
we use data, a loss function, and prior information to 
find Bayes’ rule for point estimation, highlighting that 

Bayes’ rule explicitly depends on the choice of loss 
function. If we choose an estimator without explicitly 
considering loss, we are implicitly, and possibly inadvert-
ently, assuming a specific form of loss, regardless of its 
appropriateness for our situation (c.f. the utility theorem 
of Morgenstern and Von Neumann 1953).

Squared-error loss.—The most ubiquitous loss func-
tion in statistics is squared-error loss, defined as 
L(�,a)= (�−a)2. In an estimation problem, a is an esti-
mate of θ chosen by the decision maker. Using the 
Henslow's Sparrow example in a different context, sup-
pose we are trying to guess the abundance of Henslow's 
Sparrows in the upcoming year before the birds arrive 
from their wintering areas, and guesses will be penalized 
using squared-error loss relative to the abundance calcu-
lated after birds arrive. The guess is the action and the 
abundance calculated after the birds arrive is the truth 
(assuming we can perfectly estimate abundance). If the 
abundance is 75 (θ=75) and the manager guesses 
50  (a=50) the squared-error loss is (75−50)2 =625 
(Fig.  2A). Similarly, if the decision maker correctly 
chooses a = 75, no loss would be incurred (Fig. 2A). 
In  this context, θ represents the true abundance and is 
calculated after birds arrive in the spring. In the 
Henslow's Sparrow example, we are interested in Na,�, 
the cumulative abundance over a 20-yr period, a func-
tion of unknown model parameters θ. The symbol θ rep-
resents different unknowns in each problem.

Notable properties of squared-error loss are that large 
errors are penalized relatively more than small errors, 
and the penalty is symmetric about a. These properties 
may or may not be appropriate for the decision problem. 
For example, if θ represented population growth rate of 
a critically endangered species, it would be unwise to 
overestimate θ, which could lead to the erroneous conclu-
sion that the population was growing, when in fact it 
might have been declining. In such a situation, more loss 
should be given to overestimation than underestimation 
(Fig. 2B), and squared-error loss would not appropri-
ately represent the objectives of the decision maker. The 
popularity of squared-error loss stems from its relation-
ship to least squares theory and the normal distribution, 
its use for considering unbiased estimators of θ, and its 
relative computational ease (Berger 1985). The Bayesian 
risk for the squared-error loss function is

Note that Eq. 6 includes the investigator's understand-
ing of loss (and ability to quantify loss in a mathematical 
function) and the posterior distribution, which is a func-
tion of data, the likelihood, and the investigator's belief 
about the prior distribution. To find Bayes’ rule, we 
differentiate Eq. 6 with respect to a, set it equal to 0, 
and solve for a, resulting in the estimator a∗ =E(�|y) 
(see Appendix S1 for details); the results of this 

(4)r(a)=�
Θ
� L(�,a)[y|�]dy[�]d�,

(5)r(a)=�
[

�
�

L(�,a)[�|y]d�
]
[y]dy.

(6)�(a)=∫
�

(�−a)2[�|y]d�.
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optimization reveal that Bayes’ rule for squared-error 
loss is E(θ|y), the posterior mean. Putting this in context, 
assuming squared-error loss is the appropriate loss func-
tion, the optimal estimator of θ (i.e., the estimator that 
minimizes the expected squared-error loss), among all 
possible estimators (e.g., mean, median, mode), is the 
posterior mean.

In the opposite direction, a more general result holds 
for the form of the loss function given the choice of the 
posterior mean as the point estimator of θ. If investiga-
tors choose the posterior mean as a summary statistic, 
they are implicitly choosing the broader class of loss func-
tions described by

(known as the Bregman function; Banerjee et al. 2005), 
where f(a) is twice differentiable and independent of θ, 
g(θ) is independent of a, and L(θ,a) is convex to assure 
a global minimum of Bayes’ rule (see Appendix S1 for 
details). Function 7 becomes squared-error loss when 
f(a)=a2 and g(�)=�2. The appropriateness of assuming 
Eq. 7 is context dependent and might not always hold. 
Thus, if an investigator chooses the posterior mean to 
summarize the data and prior, (s)he should ensure a spe-
cific form of Eq. 7 satisfies his/her perception of loss (i.e., 
it is consistent sensu Gneiting 2011). We provide general 
guidance for choosing loss functions in Constructing loss 
functions.

Absolute loss.—An assumption of squared-error loss is 
that an investigator wants to penalize large values of 
(θ−a) relatively more than small values. If the investigator 
wants to penalize larger deviations less, one option is the 
absolute error loss, |θ−a|. The Bayesian risk for the 
absolute error loss function is �(a)= ∫

Θ
|�−a|[�|y]d�, of 

which we find the value of a that minimizes ρ(a) (see 
Appendix S1 for details). The posterior median is Bayes’ 
rule for absolute error loss.

0–1 loss.—Zero-one loss is appropriate for the estimator 
selection problem when a decision maker desires the 
same penalty for an estimate whenever the estimate does 

not equal the true value of θ, regardless of how far the 
estimate is from the true value. A loss of 0 is given when 
the estimate equals the true value of θ and a loss of 1 is 
given otherwise. The Bayesian risk for 0-1 loss results in 
the estimator a∗ =mode(�|y) (see Appendix S1 for 
details). The posterior mode is Bayes’ rule for 0–1 loss. 
Kadane and Dickey (1980) demonstrate an extension of 
0–1 loss and its relationship to Bayes’ factors as Bayes’ 
rule. In the case of symmetric, uni-modal posterior 
distributions, the mean, median, and mode are all 
equivalent. Thus, careful consideration of loss functions 
is critical for cases when the posterior distribution is 
multi-modal, skewed, or has other complex properties. 
In addition to the Bayes rules here, Table 2 provides a list 
of Bayes rules for other common loss functions.

The choice of loss function is critical for deciding on 
the appropriate inference. Gneiting (2011) demonstrates 
the importance of using the Bayes rule, or selecting con-
sistent loss functions to evaluate forecasts, and that 
grossly misguided inference might result if loss functions 
and estimators are not carefully matched. In the next 
example, we consider a generalization of SDT from 
statistical inference procedures to a situation that may 
represent a common scenario in applied ecological 
research and management.

Optimal prescribed fire frequency for Henslow's Sparrows

Our example revisits the scenario described earlier and 
involves a refuge manager deciding on a prescribed burn 
interval to implement in a management plan for 
Henslow's Sparrows on eight grasslands. This man-
agement situation at Big Oaks National Wildlife Refuge 
in southeastern Indiana, USA, includes (1) an action set 
consisting of four burn intervals a  ∈  {1,2,3,4}; one of 
which will be chosen for all grasslands for the next 20 yr, 
(2) an unknown cumulative abundance of Henslow's 
Sparrows for a 20-yr interval (Na,�) that depends on 
unknown model parameters θ (i.e., θ represents the 
model parameters β, �j, and �2 in Eq. 8) and the choice 
of management action a, (3) data from an investigation 
designed to estimate the effect of fire on Henlsow's 
Sparrow abundance (y) at eight grasslands for a 4-yr 

(7)L(�,a)= f �(a)(a−�)− f(a)+g(�),

Table 2.  Common loss functions, their mathematical formula, Bayes’ rule, and whether the functions are symmetric, and their 
shape

Loss function Formula Bayes’ rule Symmetric Shape

Squared-error loss (�−a)2 posterior mean yes convex
Weighted squared-error loss w(�)(�−a)2 ∫

Θ
�w(�)[y|�][�]d�

∫
Θ

w(�)[y|�][�]d�
no provided 

w(θ)≠1∀θ
convex

Absolute-error loss |θ−a| posterior median yes piece-wise linear
Linear loss c1(𝜃−a),𝜃 >a

c2(a−𝜃),𝜃 <a

c1

c1+c2
 quantile of posterior 

distribution
no provided c1≠c2 linear

0–1 loss 0,�∈a
1,�∉a

posterior mode piece-wise 
constant

Linex loss ec(a−𝜃) −c(a−𝜃)−1,c>0 −log ∫
Θ

e−c� [�|y]d�
c

no (c controls 
asymmetry)

convex
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period following prescribed fire, (4) prior information 
from another study on the relationship between Henslow's 
Sparrow abundance and the time since prescribed fire 
(e.g., Herkert and Glass 1999), and (5) a specification of 
loss designed to capture the expense of the management 
action and the importance of Henslow's Sparrows to 
managers. We begin by constructing a loss function that 
depends on the management action (a) and the unknown 
state of nature (i.e., the cumulative abundance of birds 
over a 20-yr period; Na,�), but first some notational clari-
fication is required.

Until now, we have described the loss function as a 
function of the action a and unknown value θ. In our 
example, the unknown cumulative abundance Na,� is a 
function of unknown model parameters θ (see Eq. 9), 
and Na,� is itself  unknown. Thus, the loss function could 
still be described as L(θ,a), but it is perhaps more natural 
to interpret loss as a function of the unknown cumula-
tive abundance Na,�, instead of model parameters θ. 
Therefore, we write L(N,a) instead of L(θ,a), for clarity.

To describe loss in terms of the management action, 
we first developed several axioms the loss function should 
meet, then developed a quantitative loss function that 
met all of the axioms. The first axiom was that frequent 
fire intervals are more costly than infrequent intervals 
and therefore, all else being equal, frequent fire intervals 
have higher loss. Second, if cumulative abundance of 
Henslow's Sparrows increases, loss decreases. For our 
third axiom, we assumed the manager had a dedicated 
budget for Henslow's Sparrow management; if the man-
ager meets the abundance objective (or comes close to 
meeting the objective), the amount spent is proportion-
ately less important than if the manager was far from 
meeting the objective. If the manager does not meet the 
objective, the amount spent is wasted and has propor-
tionately higher loss than larger abundances. This reflects 
diminishing marginal returns of saving money as the true 
cumulative abundance increases. Thus our axiom was 
when the cumulative abundance of Henslow's Sparrows 
increases, cost becomes less important. Given these axi-
oms, we developed a simple quantitative expression for 
the loss function as

(Fig. 5A). The loss function is a piecewise function with 
the first component being a line with negative slope (�1) 
and intercept (�0) that depends on a and the second com-
ponent equal to 0 when the abundance is greater than 
1835 birds (i.e., the population objective). We chose the 
intercepts (1, 0.9, 0.8, and 0.7 for 1, 2, 3, and 4 yr burn 
intervals, respectively) so that more frequent burn inter-
vals would have higher loss, and we scaled the slope 
(�1(a)=

−�0(a)

1835
) so the loss would be 0 if the average annual 

population size reached 1835 birds. Thus, cost was incor-
porated in the differing slopes and intercepts for 
each action. We selected our management objective by 
identifying what the maximum cumulative number of 

Henslow's Sparrows could be, given our model (this pro-
cess is described in more detail below).

A hierarchical Bayesian statistical model can provide 
inference for the unknown cumulative 20-yr abundance 
of Henslow's Sparrows for each burn interval such that

where yj,t are the counts of Henslow's Sparrows at site 
j=1,...,8 during years t=1,...,T=4, Aj is the area of site j, 
�j,t is the unknown density of Henslow's Sparrows at site 
j in time t and is a function of ��≡ (�,�), and xj,t represents 
the categorical explanatory variable summers-post-burn 
in site j, year t. The �j (j=1,...,8) account for differences 
in densities among sites. We assumed �j had mean 0 and 
variance equal to one to reflect the variation in densities 
among sites. We choose one as the variance because past 
estimates of densities at Big Oaks were usually between 
0 and 2 birds/ha. The mean vector �� = (−5.0,2.5,0.2,0.2) 
for the prior distribution of β was obtained by scaling 
density estimates of Herkert and Glass (1999, obtained 
from their Fig. 1) to densities for our study design. We 
let �2 = 10 to reflect our uncertainty in μ because Herkert 
and Glass (1999) focused on a study site in a different 
state and during a different time period. The model was 
fit using an MCMC algorithm in R version 3.0.2 (R Core 
Team 2013; Software S1).

The estimated posterior distributions for β are shown 
in Fig. 4. We calculated the posterior distributions for 
the cumulative 20-yr abundance of Henslow's Sparrows 
across the eight sites using the derived quantity

(Fig. 5B). Equation 9 calculates the expected annual 
abundance across the eight sites over an infinite time 
horizon, for each management action, and multiplies the 
expected annual abundance by 20 to scale it to the rele-
vant management time frame. The limit in Eq. 9 repre-
sents annual abundance for each potential action and is 
multiplied by 20 to avoid an incomplete cycle for a 3-yr 
burn rotation. The management objective of 1835 indi-
viduals was chosen because it represented a large but 
attainable value of Na,�. We calculated the Bayesian 
expected loss in Eq. 3 for each burn interval (see Software 
S2 for details) as

The resulting posterior risk for the burn intervals of 1, 
2, 3, and 4 was 0.65, 0.27, 0.34, and 0.26 respectively. 
These results indicate that, despite a 2-yr burn interval 
appearing to produce the largest number of birds in the 
observed data (Fig. 5B), when including our loss 

L(N,a)=

{
𝛼0(a)+𝛼1(a)Na,�, Na,�<1835

0, Na,�≥1835

(8)

yj,t ∼Poisson(Aj�j,t),

log(�j,t)=x
�
j,t�+�j,

� ∼Normal(�,�2
I),

�j ∼Normal(0,1),

(9)Na,�= lim
T̃→∞

20
∑8

j=1

∑T̃

t=T+1
Ai𝜆j,t(a,�)

T̃−T

�(a)=ENa,� |yL(N,a)=∫N

L(N,a)[Na,�|y]dN.
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functions associated with increasing financial cost, a 4-yr 
burn interval was Bayes’ rule for management of grass-
lands for Henslow's Sparrows.

Constructing Loss Functions

In the previous sections, we developed or assumed 
various formulations of loss functions. Because statistical 
inference can be linked to decision theory through the 
incorporation of a loss function, guidance for con-
structing loss functions is important. In applied settings, 
practitioners of SDT assume functions for [y|θ], [θ], and 
L(θ,a). Ecologists are likely more comfortable with 
assuming relationships for the first two terms than the 
last term, and there are a large number of references that 
provide guidance on choice of the likelihood and prior 
distributions (e.g., Royle and Dorazio 2008, Rohde 2014, 
Gelman et  al. 2014, Hobbs and Hooten 2015). In the 
ecological literature, however, much less guidance is 
available for constructing a loss function.

Hennig and Kutlukaya (2007:21) wrote, “the task of 
choosing a loss function is about the translation of an 
informal aim or interest that a researcher may have in 
the given application into the formal language of math-
ematics." Ultimately, the choice of a loss function is as 
subjective as a likelihood or prior because it reflects the 
knowledge of the decision maker. Different decision 

makers may likely construct different loss functions for 
the same problem. There are no generically optimal loss 
functions because optimizing a loss function would 
require specifying another loss function over which to 
optimize. The challenge for the decision maker is to 
translate their perception of loss (or utility) into a math-
ematical formula, which is usually not a trivial task. Due 
to the difficulty in translating a researcher's knowledge 
into a mathematical equation, the vast majority of appli-
cations of SDT, and decision theory in general, rely on 
some standard form of loss function. Hennig and 
Kutlukaya (2007:22–23) report that the majority of appli-
cations of statistical prediction and point estimation 
problems use versions of the squared-error loss function 
due to the simplicity of mathematics and “the self-
confirming nature of the frequent use of certain ‘standard’ 
methods in science.” We contend that when there is not 
a clear path forward for the development of an applica-
tion-specific loss function, and a standard loss function 
does not contradict existing knowledge and goals, then 
using a standard loss function is a starting point. At least 
an explicit choice is made rather than acceptance of one 
that may contradict existing knowledge or goals.

We have collected the most popular loss functions used 
in academic research in Table 2. We arranged these in 
terms of two basic properties of each loss function: sym-
metry and relative shape. These properties can assist in 

Fig. 4.  Posterior distributions of β obtained from fitting Eq. 8 to Henslow’s Sparrow data using the MCMC algorithm. The log 
density of site j, t years after a burn was: log(�j,t)=�0+�j for t=1 and log(�j,t)=�0+�t−1+�j for t=2,3,4. The posterior 
distributions of β were used to derive cumulative Henslow’s Sparrow abundance over a 20-yr period using Eq. 9.
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selecting from among standard loss functions. As noted 
previously, a symmetrical loss function penalizes under-
estimation of the true state of nature the same as 
overestimation. In many cases, symmetrical loss func-
tions are appropriate, for example, when estimating ani-
mal locations from telemetry or satellite data. Usually, 
there is no reason to systematically penalize location 
error in one direction over another for every location in 
a data set (but see Brost et al. 2015). Although symmetric 
loss functions are the most ubiquitous in statistics, we 
find it easier to envisage ecological examples in which 
asymmetric loss functions are more appropriate. We 
described two scenarios in the cases of population growth 
rate of an endangered species and fire management for 
Henslow's Sparrows. Other examples include estimation 
of maximum dispersal distance of invasive species, 
estimating minimum habitat requirements of species for 
the development of protected areas, and modeling an 
animal's behavior of switching among mating and eating. 
In the first two cases, underestimating the true value 
would have severe consequences; invasive species could 
colonize areas thought to be beyond its dispersal dis-
tance, and resources invested in developing protected 

areas would be wasted on an area too small for a species 
to persist. In the third case, animals must allocate 
resources to both their probability of surviving and 
reproducing (e.g., songbirds choosing either to sing or 
collect food). The loss associated with starvation is likely 
larger than reduction of reproductive potential. Ver Hoef 
and Jansen (2007) use the asymmetric linex loss to correct 
for prediction bias in a space–time model of Harbor seal 
counts.

In addition to symmetry, a second important consid-
eration is the relative shape of the loss function. The 
relative shape describes the penalty for increasingly large 
differences between the action and the true state of 
nature. How should a decision maker proceed in deter-
mining the curvature of the loss function? There are no 
easy rules for choosing a shape. However, one important 
aspect, whether the function is concave or convex, can 
be determined by axioms of the decision problem (as we 
described in the Henslow's Sparrow example). Most com-
mon loss functions used in applications are convex or 
linear (Table 2). These shapes assume that large errors 
are penalized relatively more than small errors, or rela-
tively equally to small errors, respectively. Although 

Fig. 5.  (A) Loss functions for the example of four prescribed-fire frequencies considered for managing grasslands for Henslow’s 
Sparrow habitat. (B) Posterior probability distributions [Na,�|y] of average annual abundance of Henslow’s Sparrows given the 
decision of burn interval. Posterior risks were calculated by convolution of the loss functions in (A) with the posterior distribution 
in (B) for each interval. The posterior risks for burn intervals 1, 2, 3, and 4 were: 0.65, 0.27, 0.34, and 0.26, respectively. Thus, Bayes’ 
rule was a 4-yr burn interval.
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concave loss functions are rare in practice, it does not 
preclude their consideration from use. Concave loss func-
tions assume that increasing error has diminishing mar-
ginal loss. After an error threshold has been reached, 
increasing error only has an arbitrarily small increase in 
loss. That is, if your choice of action is wrong, it might 
as well be very wrong; in this sense, concave loss func-
tions are similar to 0–1 loss.

It is the decision maker's responsibility to specify the 
shape of loss and provide an explanation for their choice 
(as with study design, likelihood, and priors). When 
detailed loss information is lacking, we recommend that 
decision makers begin by considering standard loss func-
tions like those reported in Table 2. A decision maker 
can narrow their choices by considering the simple prop-
erties of symmetry and relative shape which reflect the 
importance of over-estimation vs. under-estimation, and 
the relative penalty for increasing distance between 
actions and the true state of nature, respectively. The 
more the loss function reflects the decision maker's objec-
tives, the more satisfied (s)he will be with the resulting 
decisions. Regardless of the initial choice of loss function, 
if the decision maker's choices are well-articulated and 
transparent, they lend themselves to rational debate 
among collaborators and peers. This transparency will 
lead to improvements in loss function specifications over 
time (c.f. double-loop learning, e.g., Johnson 2006).

Discussion

Traditional statistical inference was dedicated to 
learning about a process from data collected during a 
statistical investigation, without regard for how the 
inference would be used (Berger 1985). Fisher (1955:77) 
stated as statisticians “we aim, in fact, at methods of 
inference which should be equally convincing to all 
rational minds, irrespective of any intentions they may 
have in utilizing the knowledge inferred." In contrast, 
SDT is an extension of traditional statistical inference 
that pairs inference with the motives of a decision maker 
in a decision theoretic framework (Wald 1950, Savage 
1954). This pairing is natural in applied ecology because 
data are often collected with the explicit purpose to 
inform decisions. SDT provides the formal link between 
advanced statistical methods for ecological inference and 
ecological decision making. The pairing is made through 
specification and integration of a loss function. We pro-
vided two different problems (point estimation and 
Henslow's Sparrow management) with varying implica-
tions for ecological investigation.

Our first problem of choosing point estimators for 
Bayesian posterior distributions illustrates two impor-
tant messages. First, the choice of point estimator for 
posterior distributions is not arbitrary. Optimal estima-
tors exist, given the choice of a loss function. Second, 
whether an investigator uses SDT or not, given the choice 
of estimator, there is an underlying assumed form of the 
loss function that is optimal. This notion is closely related 

to the utility theory developed by Morgenstern and Von 
Neumann (1953) who proved that given a decision maker 
met a set of axioms, there existed a utility function rep-
resenting their preferences. Generally, a class of loss 
functions has the same Bayes’ rules for point estimation, 
and a choice of estimator implies an investigator's belief 
in the class of loss functions. These concepts also apply 
to evaluating forecast data (Gneiting 2011).

Our second problem demonstrates the flexibility of 
SDT as a general framework for applied decision prob-
lems. Natural resource agencies regularly collect infor-
mation about processes for which they must make 
management decisions. How to link that information 
with the decision is often not well understood and the 
tasks of data collection and decision making are ad hoc 
and done in two unlinked steps. There are several poten-
tial issues with a two-step approach. First, relevant infor-
mation collected on a process might be lost when using 
an ad hoc approach. Thus, there is no guarantee the 
decision will be optimal. Second, optimality is only 
defined with respect to a loss function and therefore, 
without a loss function, there are no optimal decisions. 
Third, how the decision maker came to their decision can 
be opaque without a transparent process of finding an 
optimal decision. SDT provides such a process for opti-
mizing actions given data.

In each of these SDT problems, the decision maker 
has the additional task of explicitly defining a loss func-
tion. For point estimation, loss was described by a func-
tion quantifying an incorrect point estimate. For the 
Henslow's Sparrows, loss was described by a function 
quantifying the objectives of minimizing cost and maxi-
mizing cumulative abundance. Several authors have 
commented on the difficulty of choosing loss functions 
and how this difficulty often precludes the implementa-
tion of SDT (e.g., Fisher 1935, Tiao and Box 1973, 
Spanos 2012). The complexities of specifying or choosing 
a reasonable loss function are not trivial, and it is unlikely 
that loss functions can be developed for every problem. 
In some cases, there are obvious choices of loss functions 
(e.g., minimizing bias). In other situations, loss can be 
based on a set of pre-defined objectives. For example, 
adaptive harvest management of mallards (Anas platy-
rhynchos) in North America relies on a loss function 
based on the two objectives of maximizing long-term 
cumulative harvest and maintaining a population size 
>8 100 000 individuals (Johnson et al. 1997, Nichols et al. 
2007). As a general principle for developing a loss func-
tion, we emphasize that decision makers first clearly 
articulate a set of axioms based on their objectives that 
the loss functions should meet and develop their loss 
function relative to those axioms. In this sense, develop-
ing a loss function is analogous to developing statistical 
models based on hypotheses of ecological process; the 
loss function is a model for true loss.

Many other decision frameworks are closely related to 
SDT. Structured decision making, adaptive manage-
ment, and game theory each concern analytic tools of 
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evaluating decisions based on expected loss. For exam-
ple, Markov decision processes (MDPs) solved using 
stochastic dynamic programming are used for making 
state-dependent decisions by calculating expected loss 
through time, with action-specific time-varying transi-
tion probabilities (Puterman 2014). In contrast to SDT, 
problems addressed using MDPs assume the true state 
of nature is known at the time of the decision; a difficult 
assumption to validate for many ecological problems. 
Partially observable MDPs (POMDPs) account for uncer-
tainty in the true state of nature (Williams 2009, 2011) 
and are generalizations of SDT for recurrent decisions.

Other important concepts related to ecological infer-
ence with critical ties to SDT are model selection 
(Akaike 1973, Gelfand and Ghosh 1998, Hooten and 
Hobbs 2015, Williams 2016) and adaptive monitoring 
designs (Wikle and Royle 1999, 2004, Hooten et  al., 
2009, 2012). Akaike's information criterion was derived 
in a decision theoretic framework and is based on choos-
ing a model that minimizes the approximated expected 
Kullback–Leibler loss function (Akaike 1973). The 
Kullback–Leibler loss function is attractive because it 
provides a theoretical basis for model selection (Burnham 
and Anderson 2002). Gelfand and Ghosh (1998) use SDT 
to address model selection for a more general class of 
loss functions. In adaptive sampling, the predictive vari-
ance of a process of interest or some other design crite-
rion is the loss function and the sampling design that 
minimizes the expected loss is the optimal action (sam-
pling design) chosen (Wikle and Royle 1999, Hooten 
et al., 2009, 2012).

Bayesian SDT provides the capability of explicitly 
incorporating prior information into the decision. 
Additionally, computational methods common for fit-
ting Bayesian models (i.e., MCMC) can easily be 
extended to calculate Bayesian risk and select the Bayes 
rule for applied decision problems (as demonstrated in 
Software S2). This relatively simple extension of Bayesian 
analysis provides a framework for thinking about and 
analyzing almost any ecological decision problem.
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