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Abstract.   Analyzing ecological data often requires modeling the autocorrelation created by 
spatial and temporal processes. Many seemingly disparate statistical methods used to account 
for autocorrelation can be expressed as regression models that include basis functions. Basis 
functions also enable ecologists to modify a wide range of existing ecological models in order 
to account for autocorrelation, which can improve inference and predictive accuracy. 
Furthermore, understanding the properties of basis functions is essential for evaluating the fit 
of spatial or time-series models, detecting a hidden form of collinearity, and analyzing large 
data sets. We present important concepts and properties related to basis functions and illus-
trate several tools and techniques ecologists can use when modeling autocorrelation in ecolog-
ical data.

Key words:   autocorrelation; Bayesian model; collinearity; dimension reduction; semiparametric 
regression; spatial statistics; time series.

Introduction

Ecological processes interact at multiple temporal and 
spatial scales, generating complex spatio-temporal pat-
terns (Levin 1992). The science of ecology is concerned 
with understanding, describing, and predicting compo-
nents of these spatio-temporal patterns using limited and 
noisy observations. An important consideration when 
developing an ecological model is how to include the 
spatial, temporal, or spatio-temporal aspects of the 
process (Legendre 1993). For example, species distri-
bution models are used to predict and infer how the 
occurrence and abundance of plants and animals varies 
across space and time (Elith and Leathwick 2009, Hefley 
and Hooten 2016). The abundance of a species within a 
patch of habitat might depend on environmental covar-
iates (e.g., minimum annual temperature), but might also 
depend on the abundance in surrounding patches. In 
other words, the abundance in nearby patches may be 
more similar than could be explained by environmental 
conditions alone (Tobler 1970, Legendre and Fortin 

1989). When the value of an observation depends on its 
proximity to other observations, the observations are 
said to be autocorrelated (Table 1). Disentangling auto-
correlation from the effect of environmental covariates 
is critical to inferring endogenous and exogenous factors 
that influence populations and ecosystems (Borcard et al. 
1992). Moreover, properly accounting for autocorre-
lation is necessary for obtaining reliable statistical 
inference (Fieberg and Ditmer 2012, Hefley et al. 2016).

Isolating the effect of autocorrelation in an ecological 
model can be accomplished by including a function that 
captures the dependence among observations that are 
close in space or time. The mathematical form of the 
function that best describes the autocorrelation is always 
unknown and may be complex, but can be approximated 
by a combination of simple basis functions. Most ecolo-
gists have encountered basis functions (e.g., polynomial 
regression), but may not be aware of the breadth of situa-
tions in which they can be used to model autocorrelation 
in ecological data. For example, basis functions are used 
in semiparametric models, such as generalized additive 
models (GAMs), but are also implicitly used in spatial or 
time-series models. Understanding how basis functions 
can be used to model autocorrelation is essential for eval-
uating the fit of spatial, time-series, or spatio-temporal 
models, detecting a hidden form of collinearity (Hodges 
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and Reich 2010), and facilitating the analysis of large data 
sets (Wikle 2010). More importantly, employing the basis 
function approach enables ecologists to tailor many com-
monly used models to account for autocorrelation, which 
can improve inference and predictive accuracy (Hooten 
et al. 2003, Conn et al. 2015, Buderman et al. 2016).

We have three goals in this paper: (1) introduce concepts 
and terminology related to basis functions and autocorre-
lation; (2) demonstrate the connections between commonly 
used methods to model autocorrelation; and (3) develop a 
working knowledge of the basis function approach so ecol-
ogists can devise ways to model autocorrelation in com-
monly used ecological models. We first introduce the 
concepts of basis functions and then first-order and second-
order model specifications. Then we present three examples 
to illustrate these concepts: a standard regression model, a 
time-series model, and a spatial model, each applied to 
different types of ecological data. We include supple-
mentary material comprised of tutorials that contain 
additional descriptions, data, and example computer code. 
By illustrating a diversity of modeling approaches, we 
encourage researchers to consider multiple perspectives 
when modelling autocorrelation in ecological data.

Basis Functions

We begin by describing the basis function approach in 
a linear regression setting. Consider a simple linear 
regression model of pelagic bioluminescence density as a 
function of water depth (Fig. 1a, Gillibrand et al. 2007)

where y is defined (≡) as an n × 1 vector of biolumines-
cence density (i.e., y≡ (y1,… ,yn)� is a set of n observa-
tions), z0 is an n × 1 vector of ones (z0 ≡ (1, …, 1)′), z1 is 
an n × 1 vector that contains the depth in meters of the 

observed bioluminescence sources (z1  ≡  (depth1,  …, 
depthn)′), α0 is the intercept, α1 is a regression coefficient, 
and ε is an n × 1 vector that contains independent and 
normally distributed error terms with variance σ2

ε
 

(i.e.,  �≡ (ε1,… ,εn)� where εi
∼N(0, σ2

ε
)). In this simple 

linear regression model, the basis coefficients are α0 and 
α1, and the basis vectors z0 and z1 are the depths raised to 
the power 0 and 1 (Table 1). It is not common to refer to 
transformations of a covariate as basis vectors; however, 
the transformations form a “basis” of possible values in 
covariate space. The function that transforms a covariate 
into a basis vector is referred to as a basis function. 
Although the terms basis function and basis vector tend 
to be used interchangeably, basis functions are con-
tinuous functions, whereas basis vectors are the output 
from a function at a finite number of points (e.g., where 
depth was measured; Table 1; see Appendix S1 for further 
discussion). The collection of basis vectors resulting from 
transformations of a covariate defined by a basis function 
are known collectively as a basis expansion. For example, 
in Eq. 1, the collection of vectors z0 and z1 are the basis 
expansion determined by transformations of the covariate 
depth using a power function. Finally, as in simple linear 
regression, the expected density of bioluminescence at the 
measured depths is the linear combination of basis 
vectors and their coefficients α0z0 + α1z1 (Fig. 1a).

It is clear from Fig. 1a that the simple linear regression 
model does not adequately capture the relationship 
between bioluminescence and depth. A more flexible 
basis expansion that better captures the relationship is 
the polynomial regression model that includes the quad-
ratic effect of depth 

where α2 is the basis coefficient for the squared effect of 
depth (z2 = z2

1
; Fig.  1b). Some models that use basis 

(1)y=α0z0+α1z1+�,

(2)y=α0z0+α1z1+α2z2+�,

Table 1.  Glossary of terms and definitions.

Term Definition

Autocorrelation Correlation between observations based on some measure of distance or time that exists after 
the influence of all covariates is accounted for

Basis expansion A collection of basis vectors from a single covariate
Basis vector Any transformation of a covariate
Basis function Any mathematical function that transforms a covariate
Compact support A support that does not include all possible locations or time points
Correlation function A function that describes the autocorrelation between observations
Correlation matrix A positive semi-definite matrix whose elements are the correlation between observations
Covariate Any quantity that can be measured and is associated with an observation (e.g., the time or 

spatial location of the observation)
Dependence Correlation between observations defined on a general space (spatial or temporal dependence 

is equivalent to autocorrelation)
First-order specification When a function that models the dependence is specified in the mean (expected value) of a 

probability distribution
Global support A support that includes all possible locations or time points
Second-order specification When a function that models dependence is specified in the covariance of a probability 

distribution
Support The set of locations or time points where the basis function results in non-zero values
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functions can be respecified, which can facilitate interpre-
tation, increase computational efficiency, and improve 
numerical stability of estimation algorithms. For 
example, we can respecify Eq. 2 using a different basis 
expansion, but in a way that yields the exact same model 

where z1 is an n  ×  1 vector of the observed depths in 
meters, kj is the jth depth of interest (j = 1, 2, 3), and αj is 
the basis coefficient. The two basis expansions in Eqs. 2 
and 3 have different basis vectors and will yield different 
estimates of αj, but result in the exact same polynomial 
curve when fit to the data; mathematically, this can be 
shown by expanding the quadratic terms in Eq. 3. For 
example, let k1 = 1,140 m, k2 = 2,620 m, and k3 = 3,420 m, 
and compare the basis vectors and predicted biolumines-
cence (cf. Fig. 1b, c). An interactive figure for this example 
can be found in Appendix S2.

Even if the specifications result in identical models, 
there are many reasons why one basis expansion might be 
preferred over others. For example, the number of 
parameters in the model can be reduced if a basis 
expansion results in some basis coefficients that can be 

assumed to be zero (see confidence intervals for αj in 
Appendix S2). In addition, some basis expansions might 
have scientific interpretations. For example, the model in 
Eq.  3 states that the density of bioluminescence is a 
function of the distance between the observed depth and 
three locations in the water column that we might believe 
are biologically important. Finally, some basis expan-
sions may reduce the correlation among terms in the 
model. For example, the coefficient of determination (R2) 
for the basis vectors z1 and z2 in Eq. 2 is 0.96, whereas the 
maximum R2 among the three basis vectors in Eq. 3 is 
0.25 (Fig.  1b, c). The reduced correlation can improve 
performance of the parameter estimation algorithms, 
demonstrating the benefit of respecifying a model with a 
different but equivalent basis expansion.

Model assumptions

A critical assumption of models that use basis func-
tions is that a linear combination of basis vectors ade-
quately approximates the unknown relationship between 
the observed response and the spatial location. In a 
regression context, this is analogous to assuming the 

(3)y=α1(z1−k1)2+α2(z1−k2)2+α3(z1−k3)2+�,

Fig.  1.  Scatterplots showing the density of pelagic bioluminescence (sources) vs. water depth. The top panels show fitted 
regression models (black lines). The corresponding basis vectors multiplied by the estimated coefficients (colored curves) are shown 
in the bottom panels. (a) Simple linear regression model (Eq. 1) with corresponding constant (red) and linear basis vectors (blue). 
(b) Polynomial regression model (Eq. 2) with corresponding constant (red), linear (blue), and quadratic basis vectors (green). (c) The 
same polynomial regression model as that shown in panel (b), except with basis vectors calculated relative to three water depths (kj 
in Eq. 3 where k1 = 1,140 m, k2 = 2,620 m, and k3 = 3,420 m; vertical colored lines). Note that the basis vectors are multiplied by the 
estimated coefficients and summed to produce the fitted curves (black lines). See Appendix S2 for an interactive version of this 
figure.
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covariates, or transformation of covariates, adequately 
approximate the expected response. For example, it is 
assumed in Eqs. 2 and 3 that a linear combination of the 
basis vectors (e.g., α0z0 + α1z1 + α2z2) adequately repre-
sents the unknown functional relationship between depth 
and the density of bioluminescence.

More formally, assuming a basis expansion is adequate 
for approximating an unknown functional relationship 
implies that the basis vectors “span” the space containing 
the unknown function explaining the relationship 
between the covariate and the response. In the biolumi-
nescence example, the basis vectors span the set of all 
second-degree polynomial functions because any second-
degree polynomial function of depth is as a linear combi-
nation of the basis vectors in Eqs.  2 or 3. By selecting 
these basis vectors, we are assuming that the true under-
lying relationship between depth and the density of bio-
luminescence is modelled appropriately as a second-degree 
polynomial. The two collections of basis vectors in Eqs. 2 
and 3 both span the same space, which is another way of 
understanding why the estimated curves in Fig. 1b and c 
are identical.

Generalizations

Now consider an unknown function η(x) that describes 
a pattern or process in nature that generates autocorre-
lation over the space of interest x. For example, η(x) 
could describe the similarity in abundance among habitat 
patches in geographic space, population regulation influ-
enced by endogenous factors in temporal space, or how 
net primary productivity changes with temperature in 
covariate space. Even though the true form of the 
function η(x) is unknown, we can approximate it with a 
combination of simple basis functions. We combine the 
basis functions in a linear equation such that 
η(x)≈

∑m

j=1
αjfj(x), using a general notation that consists 

of m basis functions fj(x) (j = 1, …, m). In the polynomial 
regression model (Eq.  2), for example, f1(x)  =  x0, 
f2(x) = x1, and f3(x) = x2. In what follows, we use matrix 
notation and write η ≡ Zα, where η is an n × 1 vector 
representing an approximation of the unknown function 
η(x) at the n locations x in the space of interest, Z is an 
n × m matrix containing the basis vectors, and α is an 
m × 1 vector of basis coefficients. We also use the matrix 
notation Xβ, where X is an n × p matrix of traditional 
covariates and β is a p × 1 vector of traditional regression 
coefficients. In some applications, there is no practical 
difference between including basis vectors in X or Z; 
however, the choice of notation is used to designate 
whether the coefficients are treated as fixed (X) or random 
(Z) effects in what follows.

Model Specifications

An important concept for understanding the equiva-
lence of certain spatial and time series models is first-
order and second-order model specifications (Table  1; 

Cressie and Wikle 2011, Hobbs and Hooten 2015), which 
are also known in the mixed-model literature as G-side 
and R-side specifications (Littell et al. 2006, Stroup 2012). 
First-order and second-order specifications differ in 
terms of whether a function describing autocorrelation is 
contained in the mean (expected value) or the covariance 
of a probability distribution. A general understanding of 
hierarchical models or mixed models is necessary for 
what follows (Ruppert et  al. 2003, Littell et  al. 2006, 
Wood 2006, Ruppert et al. 2009, Stroup 2012, Hodges 
2013, Hobbs and Hooten 2015).

First-order specification

A first-order specification refers to a model that con-
tains a function in the mean structure of a distribution for 
describing autocorrelation (Table 1). Consider the linear 
regression model y = Xβ + ε. Assuming independent and 
normally distributed errors (�∼N(0, σ2

ε
I)), we can write 

this model as

As before, an assumption of Eq. 4 is that a linear combi-
nation of the covariates serves as a good approximation to 
the unknown relationship with the mean (expected value) 
of the response. For example, we might assume that biolu-
minescence density can be modeled as a quadratic effect of 
depth (e.g., Eq. 1 and Fig. 1b); however, the model in Eq. 4 
is inadequate because autocorrelation in the residuals is 
evident (e.g., bioluminescence densities that occurs within 
certain ranges of depth occur entirely above or below the 
fitted curve; Fig. 1a). A linear combination of basis vectors 
may be added to the mean to improve model fit and satisfy 
model assumptions, such that 

The basis expansion (Z) accounts for additional com-
plexity in the mean structure (e.g., lack of fit due to auto-
correlation). The covariates in X may or may not include 
an effect of time or spatial location (e.g., linear and quad-
ratic effect of depth).

Second-order specification

A second-order specification refers to a model that contains 
a function in the covariance of a probability distribution 
for describing the autocorrelation. Consider the linear 
model y=X�+�+� where �∼N(0,σ2

ε
I), �∼N(0,σ2

α
R), 

and the random effect η results in correlated errors. Using 
integration, we can express the model as

where R is a correlation matrix that accounts for autocor-
relation among observations. The correlation matrix R is 
often specified using a correlation function that depends 
on a distance measure between two observations in the 
space of interest (Table  1). In the bioluminescence 

(4)y∼N(X�,σ2
ε
I).

(5)y∼N(X�+Z�,σ2
ε
I).

(6)y∼N(X�,σ2
ε
I+σ2

α
R),



XXX 2016 5AUTOCORRELATION IN ECOLOGICAL DATA

C
o
n
c
e
p
ts &

 S
yn

th
e
s
is

example, autocorrelation that remains in the residuals 
after fitting a regression model could be explicitly modeled 
using a second-order specification in Eq. 6.

Equivalent specifications

In some situations, the first-order and second-order 
specifications result in the same model. When a model 
has an equivalent first- or second-order specification, it is 
advantageous to convert between the two specifications 
for efficient implementation of models that account for 
autocorrelation and to assess collinearity among covar-
iates and basis vectors. To demonstrate equivalent model 
specifications for a specific case, we make the additional 
assumption that the basis coefficients in Eq. 5 are nor-
mally distributed random effects (i.e., �∼N(0,σ2

α
I)). 

Equivalent probability density functions can be obtained 
by integrating the first-order specification in Eq. 5

where equivalence between the first- and second-order 
specifications holds if the correlation matrix R is the 
outer product of the basis expansion Z (i.e., R ≡ ZZ′). 
The integration in Eq. 7 effectively “moves” the autocor-
relation modeled by the basis vectors in the mean 
structure to the covariance structure. For example, con-
sider a mixed-effects model where Z is used to represent 
autocorrelation due to a site or grouping effect among 
observations

where, y1 and y2 were observed at the first site, y3 and y4 
were observed at the second site, etc. If we assume the basis 
coefficients are normally distributed random effects, then

where R is called the compound symmetry correlation 
matrix (Littell et al. 2006, Zuur et al. 2009, Stroup 2012). 
The model that is obtained by using the first-order specifi-
cation that treats site as a random effect (Eq. 8) is identical 
to the model obtained by specifying a second-order model 
using a compound symmetry correlation matrix (Eq. 9).

Although one may start with a basis expansion Z, 
many methods developed to model autocorrelation start 
by choosing a correlation matrix R. When starting with a 
correlation matrix R, a basis expansion Z can be obtained 
by decomposing (factoring) the correlation matrix (e.g., 
using spectral decomposition; Lorenz 1956, Cressie and 
Wikle 2011:156). Consider the regression model in Eq. 6 
and let R(ϕ) be an order-one autoregressive correlation 
matrix (AR(1)) 

where −1 < ϕ < 1 and n is the total number of observa-
tions (e.g., in a time series). The AR(1) correlation matrix 
(Eq.  10) is commonly used in time-series analysis to 
model temporal correlation that diminishes geometri-
cally with a rate of decay that depends on ϕ. When a 
correlation matrix or basis expansion depends on param-
eters, we include the parameters in parentheses (e.g., R(ϕ) 
and Z(ϕ)).

A correlation matrix can be decomposed to produce 
basis vectors that are useful in the first-order specifications. 
One approach to obtain basis vectors from R(ϕ) is the 
spectral decomposition: R(ϕ) = QΛQ′, where Q are the 
eigenvectors and Λ is a diagonal matrix with elements that 
contain the eigenvalue associated with each eigenvector 
(note that we have suppressed the notation for dependence 
of Q and Λ on ϕ for brevity; Cressie and Wikle 2011:156–
157). Using the spectral decomposition, the basis expansion 
can be written as Z(ϕ)=Q�1∕2. For example, if three 
observations y  ≡  (y1,  y2,  y3)′ were collected at times 
t = 1, 2, 3, the AR(1) correlation matrix using ϕ = 0.5 is

The spectral decomposition of R(0.5) is

The matrices of eigenvectors (Q) and eigenvalues (Λ) in 
Eq. 12 can be used to construct the basis expansion

Alternatively, one might use the eigenvectors Q as basis 
vectors (i.e., Z(ϕ)  ≡  Q; Griffith and Peres-Neto 2006), 

(7)
y∼∫ N(X�+Z�,σ2

ε
I)N(0,σ2

α
I)d�

=N(X�,σ2
ε
I+σ2

α
ZZ

�),

(8)Z=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(9)

R=ZZ
�

=

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0

1 0 0

0 1 0

0 1 0

0 0 1

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

�
1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

�
=

⎡⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 1 0 0

0 0 1 1 0 0

0 0 0 0 1 1

0 0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎦

,

(10)R(ϕ)=

⎡
⎢⎢⎢⎢⎣

1 ϕ1 ϕ2 ⋯ ϕn−1

ϕ1 1 ϕ1 ⋯ ϕn−2

ϕ2 ϕ1 1 ⋯ ϕn−3

⋮ ⋮ ⋮ ⋱ ⋮

ϕn−1 ϕn−2 ϕn−3 ⋯ 1

⎤
⎥⎥⎥⎥⎦

,

(11)R(0.5)=

[
1 0.5 0.25

0.5 1 0.5

0.25 0.5 1

]
.

(12)

R(0.5)=Q�Q
�

=

[
−0.54 −0.71 0.45

−0.64 0 −0.77

−0.54 0.71 0.45

][
1.84 0 0

0 0.75 0

0 0 0.41

]

[
−0.54 −0.64 −0.54

−0.71 0 0.71

0.45 −0.77 0.45

]
.

(13)Z(0.5)=Q�1∕2 =

[
−0.74 −0.61 0.29

−0.87 0 −0.49

−0.74 0.61 0.29

]
.
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which would require specifying a non-constant variance 
for the basis coefficients such that �∼N(0,σ2

α
�) .

Converting models between first- and second-order 
specifications using the techniques we have presented is 
critical for harnessing the power of basis functions for 
modeling autocorrelation in ecological data. For 
example, converting a first-order specification to the 
equivalent second-order specification is important when 
implementing efficient numerical techniques because 
analytical integration (e.g., Eq.  7) is often more stable 
and efficient when compared to numerical integration 
(e.g., numerical quadrature; Markov chain Monte Carlo 
[MCMC]; Finley et al. 2015).

Generalized models

Basis functions can be incorporated into the mean 
structure of any response distribution (e.g., Poisson, 
binomial). For example, generalized linear mixed 
models can include random effects for the coefficients 
associated with basis vectors that account for autocor-
relation (Bolker et al. 2009). Similarly, basis functions 
can also be embedded within Bayesian hierarchical 
models to account for autocorrelation (e.g., Conn et al. 
2015, see Example 3). In the examples that follow, we 
assume that the basis coefficients are normally dis-
tributed random effects; however, this is not a necessary 
assumption. As with any generalized linear mixed model 
or Bayesian hierarchical model, distributions for 
random effects other than the normal can be used (e.g., 
gamma, t-distribution; Higdon 2002, Lee et  al. 2006, 
Gelman et  al. 2013, Johnson et  al. 2013, Hobbs and 
Hooten 2015).

Example 1: Pelagic Bioluminescence vs.  
Depth Gradient

In Basis Functions, we initially modeled the density of 
bioluminescence as a function of depth using coefficients 
that were fixed effects; however, depth can also be 
thought of as the spatial location in the water column. 
Thus, it is natural to model the density of biolumines-
cence using a spatial model instead of regressing on 
depth directly. In the three model specifications used to 
capture spatial autocorrelation that follow, X is an n × 1 
matrix of ones and β is a scalar intercept term. As a 
result, the influence of depth is modeled in either the 
basis expansion Z or the correlation matrix R, in 
accordance with the first-order or second-order specifi-
cation, respectively.

Spatial regression model: a second-order specification

Consider the model in Eq.  6 where the correlation 
matrix R(ϕ) is specified using a parametric correlation 
function that depends on a range parameter ϕ (Cressie 
and Wikle 2011, Banerjee et  al. 2014). The range 
parameter controls how the correlation diminishes as the 

distance between two locations increases. For this 
example, we use a Gaussian correlation function 

where dij is the distance between locations i and j (note 
that dij = 0 for i = j) and rij(ϕ) is the element in the ith 
row and jth column of R(ϕ). In the bioluminescence 
example, dij is the difference in depth between observa-
tions i and j. Given the second-order specification, it is 
not immediately clear how to estimate the influence of 
depth on bioluminescence (i.e., β0 + η), which requires 
the spatial random effect η. To predict bioluminescence 
at the observed (and unobserved) depths using the 
second-order specification, we used best linear unbiased 
prediction (see Robinson [1991] for derivation). The 
predicted spatial random effect for the observed depths, 
given estimates of all other parameters, can be obtained 
using 

where the “hat” notation indicates that the parameter is 
an estimate (e.g., the maximum likelihood estimate). The 
fitted spatial model (Fig.  2a; β̂0+ �̂) captures fine scale 
(local) variability better than the polynomial regression 
model (Fig. 1b, c; Appendix S3).

Spatial regression model: a first-order specification

The spatial regression model can also be implemented 
using basis vectors. Consider the first-order specification 
from Eq. 5, where �∼N(0,σ2

α
I) and Z(ϕ) is obtained from 

a spectral decomposition of R(ϕ). Using Eq.  15, basis 
coefficients are equivalent to 

Because R(ϕ̂)≡Z(ϕ̂)Z(ϕ̂)
�
, by definition, Z(ϕ̂)�̂ is the 

same as �̂ in Eq. 15. The expected bioluminescence (i.e., 
β̂0+Z(ϕ̂)�̂) from the first-order specification is shown in 
Fig. 2b (see Appendix S3 for details). The fitted values 
from the first- and second-order specifications are exactly 
the same (cf. Fig. 2a, b) because both specifications result 
in an equivalent model.

Even if the initial model formulation is a second-order 
specification that uses a correlation function, the equiv-
alent first-order specification is often useful. Three 
important uses for the first-order specification are (1) it 
allows for assessment of collinearity between covariates 
in X and basis vectors in Z(ϕ) (see Example 2); (2) basis 
vectors can be visualized and certain types of basis expan-
sions have useful ecological interpretation (Griffith and 
Peres-Neto 2006); and (3) certain types of basis expan-
sions are useful for dimension reduction required to fit 
models to large data sets (see Example 3; Wikle 2010). We 
demonstrate the utility of the first-order specification in 
the following examples.

(14)rij(ϕ)= e−d2
ij
∕ϕ ,

(15)�̂=σ̂2
α
R(ϕ̂)

(
σ̂2
ε
I+σ̂2

α
R(ϕ̂)

)−1 (
y−X�̂

)

(16)�̂=σ̂2
α
Z(ϕ̂)�

(
σ̂2
ε
I+σ̂2

α
Z(ϕ̂)Z(ϕ̂)�

)−1 (
y−X�̂

)
.
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kernel basis functions

Another method that can be used to model autocorre-
lation is kernel regression. Kernel regression is a semipa-
rametric regression technique widely used by statisticians 
and the machine learning community (Bishop 2006, 
Hastie et al. 2009, James et al. 2013). Regression models 
that employ kernel basis functions are written using the 
first-order specification. The commonly used Gaussian 
kernel basis function is defined as 

where zij(ϕ) is the element in the ith row and jth column 
of Z(ϕ), and dij is the distance between the ith data point 
and the jth knot (j = 1, …, m where m is the number of 
basis vectors). Knots are locations in the space of 
interest where each basis vector is anchored (e.g., kj in 
the bioluminescence example; Table 1). In Fig. 2c, we 
show the expected density of bioluminescence predicted 
from the kernel regression model (i.e., β̂0+Z(ϕ̂)�̂). 
Comparison of the eigenvectors and kernel basis vectors 
reveals that the two types of basis vectors look different, 

but the fitted curves are nearly equivalent (cf. Fig. 2b, 
c). Importantly, as the number of basis vectors and 
knots increases to infinity (on a grid), the first-order 
model specification that uses a Gaussian kernel basis 
function (Eq. 17) converges to the second-order specifi-
cation that uses a Gaussian correlation function (Eq. 14; 
Higdon 2002). An interactive figure that allows users to 
experiment with basis functions for this example appears 
in Appendix S2.

Regression models that use kernel basis functions are 
useful because they allow for more flexible correlation 
structures compared to models that rely on standard cor-
relation functions (Barry and Ver Hoef 1996, Higdon 
2002, Sampson 2010; Table 2). Further, the number of 
basis vectors and coefficients can be controlled by the 
user depending on the level of computational efficiency 
required. Choosing the dimension of the basis expansion 
(m) to be less than n is known as dimension reduction. 
For example, converting the n × n correlation matrix in 
the second-order spatial model to the equivalent first-
order specification requires m = n, eigenvectors; however, 
kernel regression used a pre-selected number of kernel 
basis vectors (m = 17 for this example).

(17)zij(ϕ)∝ e−2d2
ij
∕ϕ,

Fig. 2.  Scatterplots showing the density of pelagic bioluminescence (sources) vs. water depth. The top panels shows the fitted 
curve (black lines) obtained from a second-order model specification that uses (a) a Gaussian correlation function, (b) the equivalent 
first-order specification that uses eigenvectors, and (c) a first-order specification that uses a Gaussian kernel basis function. The 
bottom panels show the intercept term (red), eigenvectors (b), and Gaussian kernel basis vectors (c). For illustrative purposes, only 
the product of three basis vectors and coefficients are shown (with knots located at the vertical lines in panel c). There are 51 
eigenvectors and coefficients that sum to produce the fitted curve (black line) in panel b, and 17 kernel basis vectors that sum to 
produce the fitted curve (black line) in panel c. See Appendix S2 for an interactive version of this figure.
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model specification and is helpful for modeling autocor-
relation in large data sets, allowing for statistical inference 
that would otherwise be computationally infeasible. For 
example, Katzfuss (in press) developed a multi-resolution 
basis function approximation for second-order model 
specifications that employs correlation functions and 
demonstrated the approach by modeling 271,014 esti-
mates of total precipitable water obtained from the Mic
rowave Integrated Retrieval System satellites. Modeling 
autocorrelation in large spatial data sets, such as those 
collected from automated sensing instruments on satel-
lites and aircraft, would not be feasible using traditional 
methods (e.g., second-order models that rely on corre-
lation functions).

Example 2: Population Trend

Ecologists often look for temporal trends in popu-
lation abundance to evaluate whether populations are 
increasing or decreasing. One way to infer if a population 
is increasing or decreasing is to fit a trend line to a time 
series of relative abundance. Northern bobwhite quail 
(Colinus virginianus) are a common species that occurs 
throughout a large portion of the United States, but are 
declining in abundance in many regions (Veech 2006). 
For this example, we estimate the trend in bobwhite quail 
abundance in an area of Nebraska (Fig.  3a) using the 
simple linear model

where y is a t  ×  1 vector containing the index of 
population size from each time period and t is the 
corresponding vector of times. Parameter estimation 
using maximum likelihood results in β̂1 =−1.16 and a 

95% confidence interval of [−1.88, −0.44]. The fitted 
regression model suggests a decline in abundance; 
however, a clear pattern in the residuals is present, pos-
sibly due to underlying population dynamics of bob-
white quail (Appendix S4: Fig. S1). If autocorrelation is 
ignored, the uncertainty associated with regression coef-
ficients will be underestimated and may cause the 
researcher to overstate the statistical significance of the 
decline (Cressie 1993, Hoeting 2009).

Time series model: a second-order specification

One approach for modeling the autocorrelation gen-
erated by endogenous population dynamics is to assume 
that the population size (or some transformation thereof) 
can be modeled as y∼N(β0+β1t,σ2

ε
I+σ2

α
R(ϕ)), where 

R(ϕ) can be any appropriate correlation matrix. The 
AR(1) correlation matrix (Eq. 10) might be appropriate 
for modelling autocorrelation in populations because 
it  arises from a process where ηt  =  ϕηt−1  +  νt and 
ν

t
∼N(0,σ2

α
∕(1−ϕ2)) (Rue and Held 2005:1–3, Littell 

et al. 2006:175–176); similar specifications of difference 
equations are used as stochastic models of population 
dynamics (Dennis et al. 2006). When we account for the 
autocorrelation in the bobwhite quail time series using 
the AR(1) correlation matrix (Eq.  10), we obtain 
β̂1 =−1.10 and a 95% confidence interval of [−2.61, 0.41]. 
The 95% confidence interval now covers zero and is 
approximately twice as wide compared to the simple 
linear model that does not account for autocorrelation 
(Eq. 18). The fitted trend lines for the two models (β̂0+β̂1t) 
appear nearly identical, but when the temporal process η 
is included (β̂0+β̂1t+ �̂; where η is estimated using 
Eq. 15), the fit is much better because the residuals appear 
to be uncorrelated (see Appendix S4: Figs. S1–S4).

(18)y∼N(β0+β1t,σ2
ε
I),

Table 2.  Common types of bases, important properties, and references.

Basis type Orthogonal Support Notable use Reference

Eigenvector Yes Global Dimension reduction and 
detecting collinearity between 
covariates and basis vectors in 
second-order models

Hodges and Reich (2010), 
Cressie and Wikle (2011: 
Chapter 5), Hodges (2013: 
Chapter 10)

Fourier Yes Global Large data sets with a smooth 
effect of autocorrelation

Paciorek (2007a), Cressie and 
Wikle (2011: Chapter 3)

Kernel No Global or compact Large data sets or a directional 
effect of autocorrelation

Higdon (2002), Peterson and 
Ver Hoef (2010), Sampson 
(2010)

Piecewise linear No Compact Implementing numerical 
solutions to stochastic partial 
differential equations

Lindgren et al. (2011), Krainski 
et al. (2016)

Polynomial No Global Modeling simple nonlinear 
effects of autocorrelation

Ruppert et al. (2003: Chapter 2), 
James et al. (2013: Chapter 7)

Splines No Global or compact Large data sets with smooth 
effects of autocorrelation

Ruppert et al. (2003: Chapter 3), 
Wood (2006), Hastie et al. 
(2009: Chapter 5), James 
et al. (2013: Chapter 7)

Wavelets Yes Global and compact Modeling discontinuous effects 
of autocorrelation

Nason (2010)
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Time series models: first-order specifications

To demonstrate two different first-order model specifi-
cations that account for temporal autocorrelation, we use 
eigenvectors obtained from a spectral decomposition of 
the AR(1) correlation matrix (Fig. 3b), as well as a com-
pactly supported uniform kernel basis function with 
knots placed at each year (Fig. 3c, Table 1). In contrast 
to the spatial model used in the bioluminescence example, 
the AR(1) correlation matrix does not have a corre-
sponding kernel that can be used as an approximation. 
Consequently, the first-order model that uses a uniform 
kernel basis function results in a different fit to the data 
when compared to the model that uses an AR(1) corre-
lation matrix (Fig. 3b, c). Both models, however, appear 
to capture the temporal autocorrelation and result in 
similar estimates (β̂1 =−1.28, 95% confidence interval 
[−2.59, 0.03] for the uniform kernel basis function).

Our example with bobwhite quail demonstrates that it 
is important to check for collinearity between basis 
vectors and covariates when inference on parameters, 
rather than prediction, is desired. As with traditional 
regression models, severe collinearity can negatively 
influence inference (Dormann et al. 2013). The potential 
for collinearity is evident in the first-order specification 

and can be easily checked by calculating the correlation 
between covariates and basis vectors; in contrast, the 
collinearity is effectively “hidden” in the correlation 
matrix of the second-order specification (Hodges and 
Reich 2010, Hanks et al. 2015). Checking for collinearity 
in second-order models involves obtaining the equiv-
alent first-order model specification (see Appendix S4). 
In the quail time series, for example, the coefficient of 
determination between the covariate year (t in Eq. 18) 
and second eigenvector is R2 = 0.80, which is high enough 
to degrade inference (see Hefley et al. 2016 for alternative 
approaches).

Example 3: Predicting the Distribution of a Species

In this example, we fit three different models that 
account for spatial autocorrelation to illustrate concepts 
presented in previous sections. Many ecological studies 
aim to predict the presence or abundance of a species at 
unsampled locations using species distribution models 
applied to count, presence–absence, or presence-only 
data (Elith and Leathwick 2009, Hefley and Hooten 
2016). Generalized linear mixed models with a spatial 
random effect are well-suited to model a species 

Fig. 3.  Scatterplots of bobwhite quail population counts (points) from Nemaha County, Nebraska, USA. The top panels show 
fitted regression models (black lines) obtained from a second-order specification that uses (a) an AR(1) correlation matrix, (b) the 
equivalent first-order specification that uses eigenvectors, and (c) a first-order specification that uses a compactly supported uniform 
kernel basis function. The bottom panels show the fixed effects term (red), three eigenvectors (b), and three compactly supported 
kernel basis vectors with knots located at the vertical lines (c). All basis vectors are multiplied by basis coefficients. See Hefley et al. 
(2013) for a detailed description of the data.
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distribution using count or presence–absence data 
(Bolker et al. 2009). For example, Hooten et al. (2003) 
used a binary spatial regression model to predict the 
probability of pointed-leaved tick trefoil (Desmodium 
glutinosum) occurring in 10 × 10 m plots across a 328-ha 
area from presence–absence data collected at 216 plots 
(Fig.  4a). A common problem when predicting the 

distribution of a species is that data are sparse relative to 
the study area. For this study, only 0.66% of the plots 
within the study area were sampled (Fig.  4a). 
Consequently, Hooten et  al. (2003) specified a second-
order spatial random effect to increase the predictive 
ability of a binary regression model and to account for 
spatial autocorrelation generated by a complex 

Fig. 4.  Prediction domain from the Missouri Ozark Forest Ecosystem Project presented in Hooten et al. (2003). Red and black 
points (a) represent the 10 × 10 m plot locations that were sampled (n = 216) and whether pointed-leaved tick trefoil was present 
(red) or absent (black). The heat maps (b–d) show the predicted probability of occurrence in 32,768 plots from a binary spatial 
regression model (b; Eq. 19), a reduced dimension binary spatial regression model using predictive process basis functions (Eq. 21) 
with knots located within the prediction domain represented by + (c), and a generalized additive model that uses thin plate regression 
splines (d).
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ecological process. A suitable second-order spatial binary 
model for presence–absence data is

where y is an n × 1 vector with elements equal to 1 if the 
species is present and 0 if the species is absent at a sampled 
location, g(·) is an inverse link function, and η is a vector 
of spatially autocorrelated random effects. As in Hooten 
et al. (2003), we specified the correlation matrix in Eq. 19 
using an exponential correlation function

where dij is the distance between locations i and j. 
Although there are numerous ways to implement the 
binary regression model, we adopt a Bayesian approach. 
The associated prior distributions and covariates are 
described in Hooten et al. (2003). After fitting the model, 
we predicted the probability of occurrence at all 32,768 
plots within the study area. The predicted probability of 
occurrence depends on several covariates and has a 
strong spatial component (Fig. 4b).

Evaluating the likelihood for any second-order model 
requires inverting the correlation matrix R(ϕ). For the 
geostatistical (continuous space) spatial model, inverting 
the correlation matrix has a computational cost that 
increases according to the cube of the sample size. For 
this example, when n = 216, fitting the Bayesian spatial 
model requires approximately 45-s per 1,000 MCMC 
samples obtained on a laptop computer with a 2.8-GHz 
quad-core processor, 16  GB of RAM, and optimized 
basic linear algebra subprograms, but would require 
approximately 1 h to obtain 1,000 MCMC samples from 
the same model if the sample size was n = 1,000.

For large spatial data sets, a variety of computationally 
efficient implementations can be used to model the spatial 
autocorrelation. The majority of efficient methods involve 
modeling the spatial autocorrelation using basis functions 
and a first-order model specification, which can be spec-
ified to result in dimension reduction. Unlike the Gaussian 
kernel basis function that approximates a Gaussian corre-
lation function (see bioluminescence example), there is no 
kernel basis function that approximates an exponential 
covariance function (see Higdon 2002: fig. 2 or Banerjee 
et  al. 2014:387). Therefore, we illustrate dimension 
reduction, using two different types of basis functions: the 
predictive process and thin plate regression splines. The 
predictive process is similar to kernel regression methods, 
except the basis expansion is slightly different and the basis 
coefficients are correlated in a reduced dimension of geo-
graphic space (Banerjee et al. 2008, 2014). The predictive 
process approach models the spatial process by smoothing 
over a finite number of representative locations as follows

where R*(ϕ) is the m × m correlation matrix for the prese-
lected knots (Fig. 4c) and C(ϕ) is the n × m cross-correlation 
matrix between the observed data and knots. By exam-
ining Eq. 21, it can be seen that the predictive process is 
similar to kernel basis functions, but relies on a correlation 
function to specify the matrix of basis vectors and the 
spatial correlation among basis coefficients. Using the pre-
dictive process method with m = 50 knots, the Bayesian 
model requires approximately 3-s per 1,000 MCMC 
samples obtained and the predicted probability of occur-
rence appears similar when compared to the second-order 
spatial model (cf. Fig. 4b, c; Appendix S5). Furthermore, 
the predictive process method can be implemented using 
readily available software (Finley et al. 2015).

Generalized additive models are similar to models that 
use spatial random effects, but rely on techniques and 
basis functions commonly used in semiparametric 
regression (Ruppert et al. 2003). Specifying a GAM typi-
cally requires choosing a type of basis function, the 
number of basis vectors, and the location and number of 
knots. A common difference between the previous 
methods we have demonstrated and GAMs is the type of 
basis functions used. Many different basis functions are 
used to specify GAMs and introductions can be found in 
Ruppert et al. (2003), Wood (2006), Hastie et al. (2009), 
and James et al. (2013). Although GAMs can be imple-
mented under a Bayesian paradigm (Crainiceanu et  al. 
2005, Gelman et al. 2013: Chapter 20), penalized maximum 
likelihood methods are commonly used (Wood 2006). For 
illustrative purposes, we implement a GAM using thin 
plate regression splines to model the spatial autocorre-
lation. Briefly, thin plate regression splines are a type of 
basis function that result in a one- or two-dimensional 
smooth effect of the spatial autocorrelation. Using a 
GAM framework, thin plate regression splines can be 
implemented in standard software and may be particu-
larly useful for very large data sets (e.g., n ≈ 106), requiring 
approximately 2-s to fit the model to our data using 50 
basis coefficients (Wood et al. 2015). The predicted prob-
ability of occurrence is shown in Fig. 4d and is compa-
rable to both specifications of the Bayesian spatial model 
(Fig. 4). We expected similarity between the GAM and the 
spatial model because there is a connection between first-
order models that use spline basis functions and second-
order spatial models (Nychka 2000).

Discussion

Autocorrelation: the two cultures

“What is one person’s (spatial) covariance structure 
may be another person’s mean structure (Cressie 
1993:25).” This quote highlights that, within subfields of 
statistics that focus on dependent data (e.g., spatial sta-
tistics), there is no general consensus on whether the 
influence of autocorrelation should be specified in the 
mean or covariance structure of a probability distri-
bution. The utility of first-order specified models that use 

(19)
y∼Bernoulli (g(X�+�))

�∼N
(
0,σ2

α
R(ϕ)

)
,

(20)rij(ϕ)= e−dij∕ϕ ,

(21)Z(ϕ)≡C(ϕ)R∗(ϕ)−1

�∼N
(
0,σ2

α
R

∗(ϕ)
)

,
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basis functions and second-order specified models that 
use covariance functions for dependent data has been a 
topic of discussion for several decades among statisti-
cians (e.g., Cressie 1989 and comments by Wahba 1990, 
Laslett 1994 and comments by Handcock et al. 1994 and 
Mächler 1994). As we have demonstrated, there are many 
cases where the two approaches result (exactly or approx-
imately) in the same model. With regard to which method 
to use, there are entire books written about correlation 
functions from a single perspective (e.g., Kriging in a 
spatial context; Stein 1999) and about certain classes of 
basis functions (Nason 2010; Table 2). Given the diversity 
of approaches, it is difficult to make specific recommen-
dations. Our goal is to encourage researchers to consider 
both perspectives, rather than one or the other.

First-order or second-order?

Models that use second-order specifications can be 
converted to the equivalent first-order specification to 
assess collinearity among basis vectors and covariates of 
interest (Hodges and Reich 2010, Hefley et  al. 2016). 
Modeling the autocorrelation using a first-order specifi-
cation can be beneficial when the autocorrelation does 
not follow a standard correlation function, such as the 
case with data collected from streams and rivers (Peterson 
and Ver Hoef 2010, Sampson 2010, Isaak et al. 2014) or 
moving animals (Buderman et  al. 2016; Hooten and 
Johnson, in press). The first-order specification might be 
more appealing when specifying theory-based ecological 
models (e.g., using partial differential equations) because 
the first-order model specification is naturally hierar-
chical (Wikle and Hooten 2010). With a first-order spec-
ification, the conditional distribution of the data (or 
unobserved latent process) can be selected and knowledge 
of the process can be incorporated into the mean structure 
(Wikle 2003, Hooten and Wikle 2008, Wikle and Hooten 
2010; Williams et al., in press). Second-order models can 
also be based on ecological theory (Bolker and Pacala 
1997, 1999), but may be more challenging than first-order 
models to understand and specify (Hanks, in press); 
however, second-order specifications can facilitate more 
computationally efficient algorithms by exchanging 
numerical integration algorithms for analytical solutions. 
Thus, many contemporary models for autocorrelation 
are specified in terms of first-order structure and then 
converted to second-order structure for implementation 
(Finley et al. 2015).

Choosing basis functions

Choosing basis functions requires an understanding of 
both the underlying ecological process and the properties 
of the basis functions. For example, a property of the 
polynomial basis function is that it has a global support; 
thus, an observation at one location influences the fit of 
the model at another location, regardless of how far apart 
the two locations are (Table 1). This is why polynomial 

basis expansions often fail to model fine scale structure 
(cf. Figs. 1b and 2b). From an ecological perspective, the 
global support of polynomial basis functions implies that 
the underlying ecological process is connected across the 
entire space of interest. If the ecological process is thought 
to have discontinuities, then basis functions that capture 
discontinuous structure and have compact support are a 
better choice (e.g., the uniform kernel used in Example 2; 
Table 2).

When selecting a basis function to model autocorre-
lation, standard model checking procedures are critical 
to ensure that model assumptions are met (e.g., checking 
for correlated residuals, collinearity, lack of fit, over-
fitting). Formal model selection may also be useful for 
selecting the optimal basis functions (Gelfand et al. 2012, 
Gelman et  al. 2013: Chapter 20, Hooten and Hobbs 
2015).

Computational considerations may be important when 
choosing a basis function. For example, orthogonal basis 
functions often result in more stable computational algo-
rithms because the basis vectors are independent, obvi-
ating collinearity among basis vectors. We illustrated 
only a few of the many basis functions that could be used; 
thus, we recommend that practitioners become familiar 
with the variety of options to ensure that the chosen basis 
function matches the goals of the study. To facilitate this, 
we provided a brief summary of common basis functions, 
their properties, and useful references in Table 2.

Implementation

Typically, only a small number of covariates are 
included in a regression model, but one may want to 
include as many or more basis vectors as there are obser-
vations. For example, there are as many eigenvectors as 
there are unique locations in the dataset when the corre-
lation matrix is specified using a correlation function. 
When many basis vectors are used to model autocorre-
lation, the model can overfit the data. Adding constraints 
to high-dimensional estimation problems is a common 
technique to prevent overfitting. Such methods include 
regularization, penalized maximum likelihood estimation 
(e.g., ridge regression), treating the basis coefficients as 
random effects, or using a prior distribution that induces 
shrinkage (regularization) in a Bayesian model. There are 
important connections among methods that impose con-
straints to prevent overfitting that we have not presented 
here, but are important to understand when imple-
menting models that use basis functions (Hooten and 
Hobbs 2015).

When fitting models to data sets where dimension 
reduction is required, there is a trade-off between the 
reduction in dimension and the fit of the model. The fit of 
the model is influenced by dimension reduction because 
choosing the number of basis vectors to include in a model 
is an implicit form of regularization (Gelman et al. 2013: 
Chapter 20, Hooten and Hobbs 2015). Determining which 
basis functions are optimal for approximating correlation 
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functions, how many basis vectors are needed, and the loca-
tions of knots are active areas of research (Gelfand et al. 
2012). A general rule of thumb is to choose fewer basis 
vectors than the number of unique locations in the data set, 
but as large as possible given the computational restrictions 
so that the predictions are accurate (e.g., for out-of-sample 
data). A detailed summary of dimension reduction 
approaches is beyond the scope of this paper, but technical 
introductions can be found in Paciorek (2007b), Wikle 
(2010), Cressie and Wikle (2011), and Banerjee et al. (2014).

Basis function model specifications have also become 
popular in spatio-temporal modeling, both in environ-
mental (Wikle 2002) and ecological applications (Hooten 
and Wikle 2007). In practice, we find that understanding 
the properties of basis functions is critical to imple-
menting computationally efficient Bayesian hierarchical 
models that account for spatial, temporal, or spatio-
temporal autocorrelation. In addition, using basis func-
tions as part of a Bayesian hierarchical model makes 
many spatiotemporal models accessible to users of JAGS, 
NIMBLE, Stan, and WinBugs (Crainiceanu et al. 2005, 
Wood 2016). Basis function components can be added to 
existing hierarchical models to account for autocorre-
lation using the tools and techniques presented in this 
paper. Furthermore, for many standard ecological 
models (e.g., Poisson, negative binomial regression, etc.), 
basis function models are implemented under a GAM 
framework in R packages such as mgcv (Wood 2006) 
or  in packages specifically developed for spatial and 
spatio-temporal data analysis such as spBayes (Finley 
et  al. 2015). If the basis functions are not parameter 
dependent (e.g., Moran eigenvector maps), basis func-
tions can also be used in standard software for linear or 
generalized linear mixed models (e.g., R packages lme4 
and MCMCglmm; Griffith and Peres-Neto 2006).

Inference and collinearity

For some applications, collinearity among covariates 
and basis vectors might occur and the development of 
remedial methods is a current topic of research in spatial 
statistics (Reich et  al. 2006, Hodges and Reich 2010, 
Paciorek 2010, Hodges 2013, Hughes and Haran 2013, 
Hanks et al. 2015, Hefley et al. 2017). The effects of col-
linearity among covariates and basis vectors have been 
noted in the ecological literature as well, particularly in a 
spatial context (Kühn 2007, Bini et al. 2009, Hooten et al. 
2013, Johnson et al. 2013), in time series generated from 
animal movement (Fieberg and Ditmer 2012), and in 
population trajectories (Hefley et al. 2016). In our expe-
rience, addressing collinearity among covariates and 
basis vectors is a difficult challenge in applied problems. 
In some cases, the conventional wisdom that applies to 
collinearity among covariates can also be applied to basis 
vectors, but new intuition is needed when basis coeffi-
cients are treated as random effects (Hodges and Reich 
2010, Paciorek 2010, Hodges 2013, Hanks et  al. 2015, 
Murakami and Griffith 2015). As with collinearity among 

covariates in linear regression models, there is no clear 
remedy for extreme cases.

Conclusion

Ecologists face many choices when specifying models. 
One important choice is how to model autocorrelation, 
which is not limited to specific domains and can occur in 
any space (e.g., covariate space, time, three-dimensional 
Euclidean space). Many methods used to model autocor-
relation are general and can be understood as generalized 
linear mixed models that employ basis expansions and 
treat basis coefficients as random effects. Using the basis 
function approach, we find that many of the commonly 
used ecological models can be modified to incorporate 
autocorrelation.
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