Statistical Decision Theory

Introduction

This tutorial provides R code for using statistical decision theory (SDT) to decide on a management
action for the Henslow’s sparrow example presented in the Bayesian model selection and decision theory
workshop held at the international Statistical Ecology Conference on Sunday June 26, 2016. The example
first appeared in Williams and Hooten (2016). Henslow’s sparrow data can be found here. We assume
that the reader is familiar with implementing Bayesian generalized linear models in R or Jags. A custom
MCMC sampler is used to fit a model. However, equivalent Jags code could be used instead.

Our example involves a refuge manager deciding on a prescribed-burn interval to implement in a
management plan for Henslow’s sparrows on eight grasslands over the next 20 years. The problem was
motivated by a real management issue at Big Oaks National Wildlife Refuge in southeastern Indiana,
USA from which our data arise. The manager has information on: the choice of actions for a burn interval
§ € {1,2, 3,4}, an average annual abundance of Henslow’s sparrows N5 ¢ that depends on unknown model
parameters 8 and the choice of management action J, data on the abundance of Henslow’s sparrows (y)
at eight sites for a four-year period following prescribed fire, prior information from another study on
the correlation between Henslow’s sparrow abundance and prescribed fire, and a perception of loss that
includes the expense of the management action, and abundance of Henslow’s sparrows.

We use a data set (HespData.csv) consisting of counts of Henslow’s sparrows collected along transects
at Big Oaks National Wildlife Refuge in southeastern Indiana, USA. The data can be loaded using the
code below. Make sure to specify the correct file path within the setwd(...) function.

setwd("~/")
HespData=read.csv("HespData.csv")

The Henslow data set includes a burn unit (unit) and transect identifier (transect), a unique transect
ID (transectID), the year data were collected (year), the size of the grassland being observed from
the transect (ha), the number of Henslow’s sparrows counted (counts), covariates for how many years
post-burn the counts occurred (second.year...fourth.year), and covariates for each transect for the
random effect that will be fit (r.1...r.8). R returns NA for missing values in a .csv file (see below). We
want to convert the NAs to 0.

head (HespData)

unit transect transectID year ha counts second.year third.year
1 1 a 1 2004 20.68 5 NA NA
2 1 a 1 2005 20.68 17 1 NA
3 1 a 1 2006 20.68 0 NA 1
4 1 a 1 2007 20.68 2 NA NA
5 1 b 2 2004 5.04 4 NA NA
6 1 b 2 2005 5.04 13 1 NA

fourth.year r.1 r.2 r.3 r.4 r.5r.6 r.7 r.8

1
NA 1 NA NA NA NA NA NA NA
NA 1 NA NA NA NA NA NA NA
NA 1 NA NA NA NA NA NA NA

1 1 NA NA NA NA NA NA NA
NA NA 1 NA NA NA NA NA NA
NA NA 1 NA NA NA NA NA NA
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http://datadryad.org/resource/doi:10.5061/dryad.75756/1

HespData[is.na(HespData)]=0

Model Statement

To obtain inference for the unknown average annual abundance of Henslow’s sparrows for each burn
interval we developed a Bayesian, hierarchical model to fit the data. We used a generalized linear
mixed-effects regression model,

y;t ~ Poisson(A;\;¢),
log(Njt) = &' .48 + 1,
B ~ Normal(u, o°T),
n; ~ Normal(0, 1),

(1)

where y; ; are the counts of Henslow’s sparrows at site j = 1,...,8 during years t =1, ...,T = 4, A; is the
area of site j, A;; is the unknown density of Henslow’s sparrows at site j in time ¢ and is a function of
0’ = (B,n), and x;; represents the categorical explanatory variable summers-post-burn in site j, year ¢.
The n; (j = 1,...,8) account for differences in densities among sites. We assumed 7; had mean 0 and
variance equal to one to reflect the variation in densities among sites. We choose one as the variance
because past estimates of densities at Big Oaks were usually between 0 and 2 birds per ha. The mean
vector p’ = (—5.0,2.5,0.2,0.2) for the prior distribution of 3 was obtained using moment matching from
density estimates reported in Herkert and Glass (1999). We let 02 = 10 to reflect our uncertainty in p
because Herkert and Glass (1999) focused on a study site in a different state and during a different time
period.

The posterior predictive distributions for the average annual abundance of Henslow’s sparrows [Ns g|y]
at the eight sites were derived using the equation:

8 T
Nsp = lim Zj:l Zt:T—H aiXj (6, 6)
’ T—00 T—-T

Model Fitting

To fit the model described in eq. 1, we wrote a custom MCMC algorithm in R. The algorithm is below.

pois.rv.mcmc <- function(y ,X,W,betamn,betavar,etamn,etavar,
n.mcmc,betatune,etatune){



n.burn=round (n.mcmc/10)
X=as.matrix (X)
W=as.matrix (W)
y=as.vector(y)
n=length(y)

p=dim(X) [2]
rho=dim(W) [2]

betasave=matrix(0,p,n.mcmc)
lamsave=matrix(0,n,n.mcmc)
etasave=matrix(0,rho,n.mcmc)

##t#
### Starting Values
###

beta=betamn
eta=rep(etamn,rho)
lam=exp (X}*%beta+Wi*jeta)
betasave[,1]=beta
lamsavel[,1]=1am
etasavel[,1]=eta
accept.beta=0
accept.eta=0

###
### Gibbs Loop
#HH#

for(k in 1:n.mcmc){

###
### Sample beta
#H#

betastar=rnorm(p,beta,betatune)
lamstar=exp (X} *%betastar+Wi*%eta)

mhl=sum(dpois(y,lamstar*A,log=TRUE))+
sum(dnorm(betastar,betamn, sqrt (betavar) ,1og=TRUE))

mh2=sum(dpois(y,lam*A,log=TRUE) )+
sum(dnorm(beta,betamn,sqrt (betavar) ,1log=TRUE))

mhratio=exp (mhl-mh2)

if (mhratio > runif(1)){
beta=betastar
lam=lamstar
accept.beta=accept.beta+l

}

etastar=rnorm(rho,eta,etatune)
lamstar=exp (X} *%beta +W/*}etastar)

mhl=sum(dpois(y,lamstar*A,log=TRUE))+
sum(dnorm(etastar,etamn,sqrt (etavar) ,1og=TRUE))

mh2=sum(dpois(y,lam*A,log=TRUE) )+
sum(dnorm(eta,etamn, sqrt (etavar) ,1og=TRUE) )



mhratio=exp (mhl-mh2)

if (mhratio > runif(1)){
eta=etastar
lam=lamstar
accept.eta=accept.eta+l

}

#it#
### Save Samples
###

betasave[,k]=beta
lamsavel[,k]=1lam
etasave[,k]=eta

+

cat("\n") ;flush.console()
###

### Write output

#i#

list(y=y,X=X,n.mcmc=n.mcmc,betasave=betasave[,n.burn:n.mcmc],
lamsave=lamsave[,n.burn:n.mcmc],etasave=etasave[,n.burn:n.mcmc],
accept.beta=accept.beta,accept.eta=accept.eta)

Data Preparation

The MCMC algorithm (shown above) requires a vector of observations, y, the matrix of time-since-burn
covariates, X, the random effects covariates W, hyperparameters for prior distributions, betamn, betavar,
etamn, etavar, the number of MCMC iterations, n.mcmc, and tuning parameters for Metropolis-
Hastings updates, betatune, etatune. We assign these values in the code, below.

y=HespData$counts

n=length (y)
X=cbind(rep(1,n),as.matrix(HespDatal[,7:9]))
W=as.matrix (HespDatal[,10:17])
A=HespData$ha
betamn=c(4.95,2.48,0.22,0.18)
betavar=10

etamn=0

etavar=1

n.mcmc=100000

betatune=.1

etatune=.1

After assigning the applicable objects, we select a seed, and run the algorithm, keeping track of the time
the algorithm takes to run (it might take a few seconds).

## Fit the model

set.seed(2016)

sys.time=Sys.time()

hesp.out=pois.rv.mcmc(y,X,W,betamn,betavar,etamn,etavar,n.mcmc,
betatune,etatune)



Sys.time()-sys.time
## Time difference of 4.502345 secs

Convergence is shown in Fig. [1} and posterior distributions of 3 are shown in Fig.
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Figure 1: Trace plots to demonstrate convergence
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Figure 2: Marginal posterior distributions of 3

From the MCMC iterations, we calculate the derived parameter Nsg from eq. [2| for each of our possible
actions (prescribed fire rotations).

n.iter=length(round(n.mcmc/10) :n.mcmc)
T.tilde=1000

sites=max (HespData$transectID)
a=unique(A)

burni=burn2=burn3=burnd=matrix (0,nrow=4,ncol=T.tilde)
burni[1,]=burn2[1,]=burn3[1,]=burnd[1,]=1
burn2[2,]=rep(c(0,1),T.tilde/2)
burn3[2,]=head(rep(c(0,1,0),T.tilde/2),T.tilde)
burn3[3,]=head(rep(c(0,0,1),T.tilde/2),T.tilde)



burn4 [2,]=rep(c(0,1,0,0),T.tilde/4)
burn4 [3,]=rep(c(0,0,1,0),T.tilde/4)
burné [4,]=rep(c(0,0,0,1),T.tilde/4)

derive.ppd=function(n.iter,etasave,T.tilde,sites,X,betasave,a){

N=matrix(NA,nrow=T.tilde,ncol=n.iter)

for(i in 1:n.iter){
eta=matrix(etasave[,i] ,nrow=T.tilde,ncol=sites,byrow=TRUE)
xb. tmp=t (X) %*%betasave[,1i]
xb=matrix(rep(xb.tmp,sites) ,nrow=T.tilde,ncol=sites)
lambda=exp (xb+eta)
N[,il=c(lambda¥*%a)

}

return(N)

}

N.1.tmp=derive.ppd(n.iter,hesp.out$etasave,
T.tilde,sites,burnl, hesp.out$betasave,a)
N.2.tmp=derive.ppd(n.iter,hesp.out$etasave,
T.tilde,sites,burn2,hesp.out$betasave,a)
N.3.tmp=derive.ppd(n.iter,hesp.out$etasave,
T.tilde,sites,burn3,hesp.out$betasave,a)
N.4.tmp=derive.ppd(n.iter,hesp.out$etasave,
T.tilde,sites,burn4,hesp.out$betasave,a)

##t#
### 20-year cumulative burn history
#H#

N.1=20*apply(N.1.tmp,2,sum)/T.tilde
N.2=20*apply(N.2.tmp,2,sum)/T.tilde
N.3=20*apply(N.3.tmp,2,sum)/T.tilde
N.4=20*apply(N.4.tmp,2,sum)/T.tilde

A plot of the derived posterior distributions for N5 ¢ are shown in Fig.
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Figure 3: Derived posterior distributions for N(theta,delta) from eq. 2.

Loss Function

To describe loss in terms of the management action, we first developed several axioms the loss function
should meet, then developed a quantitative loss function that met all of the axioms. The first axiom
was that frequent fire intervals are more costly than infrequent intervals and therefore, all else being
equal, frequent fire intervals have higher loss. Second, if cumulative abundance of Henslow’s sparrows
increases, loss decreases. For our third axiom, we assumed the manager had a dedicated budget for
Henslow’s sparrow management; if the manager meets the abundance objective (or comes close to meeting
the objective), the amount spent is proportionately less important than if the manager was far from
meeting the objective. If the manager does not meet the objective, the amount spent is wasted, and has
proportionately higher loss than larger abundances. This reflects diminishing marginal returns of saving
money as the true cumulative abundance increases. Thus our axiom was: when the cumulative abundance
of Henslow’s sparrows increases, cost becomes less important. Given these axioms, we developed a simple



quantitative expression for the loss function as

L(N.6) { ao(8) + a1(8)Nse, Nsg < 1835

0, Nsg > 1835
(Fig. [4)). The loss function is a piecewise function with the first component being a line with negative
slope (1) and intercept () that depends on § and the second component equal to 0 when the abundance
is greater than 1835 birds (i.e., the population objective). We chose the intercepts (1, 0.9, 0.8, and 0.7 for
1, 2, 3, and 4 year burn intervals, respectively) so that more frequent burn intervals would have higher
loss, and scaled the slope (a1 () = _fg%(;)) so the loss would be zero if the average annual population size
reached 1835 birds. Thus, cost was incorporated in the differing slopes and intercepts for each action. R

code for our loss function is below. The loss functions are shown in Fig. []

N=0: (92%20)

action=1:4

intercept=c(1,.9,.8,.7)

loss=matrix(NA,nrow=length(intercept) ,ncol=length(N))

for(i in 1:length(intercept)){
loss[i,]=-intercept[i]/max (N)*N+intercept[i]

}
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Figure 4: Loss function for Henslow’s sparrow management

Bayesian Expected Loss and Optimality

Finally, we identify the optimal prescribed fire rotation for Henslow’s sparrow management by calculating
the Bayesian expected loss:

pla) =Eo, L(0, a) = /e L0, a)[61y)d6, 3)

A plot of the integrand of eq. [3| (i.e., L(#,a)[f]y]) prior to integration is shown in Fig.
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Figure 5: Lines: Convolution (i.e., the integrand of eq. 3) of posterior distributions (from Fig. 3) and
loss (from Fig. 4) of each potential action. Numbers: Bayesian Risk (the result of integration) of each
potential action. A four-year burn interval minimizes Bayesian expected loss, and is therefore optimal
with respect to the data, model, and loss function.

The R code for calculating Bayesian expected loss, given posterior distributions and a loss function, is
straightforward.

N.mat=rbind(N.1,N.2,N.3,N.4)

BayesRisk=numeric(4)

for(i in 1:4){
h=hist(N.mat[i,],breaks=0:1841,plot=FALSE)
BayesRisk[i]=sum(h$density*loss[i,])

}

BayesRisk

[1] 0.6478278 0.2702727 0.3372603 0.2557930
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