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MOTIVATION
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Objective

“The over-reaching goal of spatio-temporal modeling in statistics is related
to the characterization of the process of interest in the presence of
uncertain and (often) incomplete observations and system knowledge."*

1Wikle and Hooten (2010), Test 19:418.

Williams et al. Dynamic Spatio-Temporal Statistical Models 2/ 42



Objective

“The over-reaching goal of spatio-temporal modeling in statistics is related
to the characterization of the process of interest in the presence of
uncertain and (often) incomplete observations and system knowledge."*

@ Prediction in space (interpolation)

1Wikle and Hooten (2010), Test 19:418.

Williams et al. Dynamic Spatio-Temporal Statistical Models 2/ 42



Objective

“The over-reaching goal of spatio-temporal modeling in statistics is related
to the characterization of the process of interest in the presence of
uncertain and (often) incomplete observations and system knowledge."*

@ Prediction in space (interpolation)

@ Prediction in time (forecasting)

1Wikle and Hooten (2010), Test 19:418.

Williams et al. Dynamic Spatio-Temporal Statistical Models 2/ 42



Objective

“The over-reaching goal of spatio-temporal modeling in statistics is related
to the characterization of the process of interest in the presence of
uncertain and (often) incomplete observations and system knowledge."*

@ Prediction in space (interpolation)
@ Prediction in time (forecasting)

@ Assimilate data and deterministic model output

1Wikle and Hooten (2010), Test 19:418.

Williams et al. Dynamic Spatio-Temporal Statistical Models 2/ 42



Objective

“The over-reaching goal of spatio-temporal modeling in statistics is related
to the characterization of the process of interest in the presence of
uncertain and (often) incomplete observations and system knowledge."*

@ Prediction in space (interpolation)

Prediction in time (forecasting)

Assimilate data and deterministic model output

@ Inference on controlling parameters of the process

1Wikle and Hooten (2010), Test 19:418.
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Everything occurs in space and time

“no History without Geography” (Cressie and Wikle 2011, p. 1)

e Unrealistic to marginalize over space (i.e., time series) or time (i.e.,
spatial models)

< Cackling goose photo> <Subsistence hunter photo>
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Everything occurs in space and time

@ Relevant to most/all fields (human biology, epidemiology, city
planning, economics)

PLOS Computational Biology | www:ploscompbiolorg " March 2014 | Volume 10 | lssue 3 | 1003499

Spatio-Temporal Simulation of First Pass Perfusion

Figure 7. Results of the spatio-temporal perfusion simulations of CFDA SE in the liver. The volume renderings show the distrbution of
CFDA SE in the mouse lver for the healthy state at different time points, showing the first pass of perfusion (1<2), the distribution phase
(Is<1<5) and the wash out (1>3).
0i10.1371/Journal pcbi1003499.9007

Williams et al. Dynamic Spatio-Temporal Statistical Models 4 /42



Everything occurs in space and time

@ Relevant to most/all fields (human biology, epidemiology, city
planning, economics)

2 VA. Alegana et al./Spatial and Spatio-temporal Epidemiology 7 (2013) 25-36

Fig. 2. Map showing the predicted monthly malaria incidence per 1000 population at constituency level for regions in the north of Namibia in 2009 using
Bayesian CAR with environmental covariates (Model 2).
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Everything occurs in space and time

@ Relevant to most/all fields (human biology, epidemiology, city
planning, economics)
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Addressing uncertainty

Observational uncertainty
@ Measurement error

o False negatives/positives

Photo: Jamie Womble
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Addressing uncertainty

Process uncertainty
@ Model uncertainty

@ Discretization

<Process uncertainty photo>
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A science-based framework

@ Incorporate knowledge obtained throughout the development of the
subject-matter science at hand

<Stack of books photo>
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Outline

In this module:

Descriptive vs. dynamic spatio-temporal models

o PDEs

@ Hierarchical modeling

@ Dynamic spatio-temporal statistical models
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Outline

Remaining modules:
@ Intro to finite differencing methods (PDE solvers)

© Example 1: spread of disease in a wildlife population using binary
spatio-temporal data

@ Example 2: spread of a population using wildlife survey data while
accounting for measurement error
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Spatio-temporal models: descriptive vs. dynamic

Two approaches for modeling spatio-temporal processes:
o Descriptive (aka marginal, phenomenological)
o Characterize mean and covariance of the process

e Dynamic (aka conditional, mechanistic)

e The process at a location evolves based on past values of the process
at nearby locations in space and time

@ Sometimes related through covariance function

@ Neither approach is “new”
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Descriptive spatio-temporal modeling

Simple example:

u(s, t) = X(s, t)B + n(s) + e(t) + (s, t)
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Descriptive spatio-temporal modeling

Simple example:

u(s, t) = X(s, t)B + n(s) + e(t) + (s, t)

Gy (s, x) = f,l

C(t,r) =

Cs(s, x; t, r) = agl

cov(n(s), n(x))
cov(e(t), e(r))
cov(d(s, t),d(x,r))

a%—i—af—i—og,

o2

cov(u(s, t),u(x,r)) = v

u(s,t) ~ N(X(s, )8, cov(u(s, t), u(x, r))
Dynamic Spatio-Temporal Statistical Models

ifs=x,t=r
ifs=x,t#r
ifs#x,t=r
ifs#£x,t#r
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Descriptive spatio-temporal modeling

Advantages/Disadvantages of descriptive approach:

Can be flexible, but requires non-negative definite covariance function
(not always easy)

Succinct, but informative summary of random processes in space and
time

Difficult to look at covariance function and understand
spatio-temporal process

Useful when understanding of the process is limited

Available covariance functions often unrealistic for spatio-temporal
processes (e.g., separable covariance functions)

Dominated spatio-temporal statistics until the 21st century

Williams et al. Dynamic Spatio-Temporal Statistical Models 12 / 42



Dynamic spatio-temporal modeling

Alternatively:

Dependence motivated by evolution of process through time and in
space

Incorporate our knowledge of process evolution

Use PDEs (or other mechanistic models; e.g., IDE) to motivate
dynamics

Nonnegative definite covariance function for free
Natural framework for forecasting

Computationally intensive

Williams et al. Dynamic Spatio-Temporal Statistical Models 13 / 42



PARTIAL DIFFERENTIAL EQUATIONS
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PDEs

What are they?
@ Models with multiple variables, expressed in terms of changes in those

variables (e.g., time, space, or space-time).
@ When involving time and space, these are dynamic spatio-temporal
models (DSTMs).

14 / 42
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PDEs

What are they?

@ Models with multiple variables, expressed in terms of changes in those
variables (e.g., time, space, or space-time).

@ When involving time and space, these are dynamic spatio-temporal
models (DSTMs).

Environmental:

@ Movement of gases and fluids.
Ecology:

@ Movement of organisms in environment.
Epidemiology:

@ Movement of disease through living systems.
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PDE Model

One example:

@ Reaction-diffusion model (dispersal and growth):

i =3 () <35 () vtk

growth

spread in space

@ The rate of change of the process u equals the spread of v in space
plus the (potentially non-linear) growth which can depend on
parameters r, and k

Williams et al. Dynamic Spatio-Temporal Statistical Models 15 / 42



PDE for Chronic Wasting Disease

Another example:!

P =VX(D(x.y)P)- f,PO- /J’,PI—yPH—dP—har(}f—Q)+r(P+ Q)(l— : f” )
0
P+Q

0,=V*(D(x,y)Q) + B,PO+ B,PI +YPH - A0 —dQ—har(

1 =V*(D(x,y))+ AQ - ul ~cI

H =a,l+0,0+apul -0H

1Galrliz:k et al. (2013), Journal of Mathematical Biology 69:369-399
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Ecological diffusion

u 2 2
& ésl: k <835 88 >[5(5 t)u(s, t)] +~v(s)u(s, t)
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How do PDEs arise in nature?

Example: Diffusion-approximation model for a population of organisms
moving according to an uncorrelated random walk in a heterogeneous
environment (congregating in desirable habitat)

Move left with p; (x, t).

e Move right with pg(x, t).
e Move nowhere with py(x, t).
°

p(x, t): Probability of animal at location x and time t.

Williams et al. Dynamic Spatio-Temporal Statistical Models 18 / 42



Lagrangian Model: uncorrelated random walk

Recurrence Equation:

p(x,t) = pr(x + Ax, t — At)p(x + Ax, t — At)
+ pr(x — Ax, t — At)p(x — Ax, t — At)
+ pn(x, t — At)p(x, t — At)

We seek a differential model on p(x, t), thus we need to get rid of Ax and
At.

Williams et al. Dynamic Spatio-Temporal Statistical Models 19 / 42



Taylor Series Expansion®

0
t—At)=p—AtP 4.
p(x, )=p 5 T
B dp op  Ax2%p
B op op  Ax2%p

1
Turchin (1998), Quantitative Analysis of Movement
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Substitution

0 0
p=(pPL+ PN+ PR)P— Ataf't)(m + pn + PR) — Atpa(m + pn + PR)
0 0
- Axa—i(pR —pL) — AXPE(PR — pr)
Ax? 0%p ,0p 0 Ax? 0?
Tﬁ(m + pr) + Ax 375(“ + pr) + PT@(PL + PR)
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Eulerian Equation

ap 9 52

_7(Bp) Ox 9.2

or = Ox (op)

o 3= Ax(pr— pL)/At

o § = Ax%(pr + pL)/2At
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Ecological Diffusion

With N organisms u(x, t) = Np(x, t):

du 02
a 8 2(5[1)

Williams et al. Dynamic Spatio-Temporal Statistical Models 23 /42



Ecological Diffusion

With N organisms u(x, t) = Np(x, t):

du 02
E 8 ) (6U)
Note, other forms of diffusion:
ou o .0 .
90 = 8—68—u (Fickian)
ou 0 .
9 5@ (Plain)
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Types of Diffusion!

Diffusion Coefficient

=10 =5 0 5 10

x
Ecological Diffusion

Fickian Diffusion

15 T T T
10 1
<
0

-10 -5 0 5 10

1
Garlick et al. (2010), Bulletin of Mathematical Biology 73:2088-2108
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Deterministic dynamic spatio-temporal modeling
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Deterministic dynamic spatio-temporal modeling

THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES
Br R. A. FISHER, ScD,, FRS.

1. THE PROBLEM OF GEXE DISPERSION

with uni ity. Ifat any point of the habitat hich

in some degree, however light, sdvantageous to survival, in the totality of it eflcts, we

may expect the mutant g to increase st the expense of theallelomorph o allelomorphs

previously occupying his pocesswill in

hood of the mutati iffused into
i ion, i ‘Supposing the range to be

long compared with the distances scparating the sites of offspring from those of their

parents, there will be, advancing from the origin, a wave of increase in the gene frequency.

We may frst on the simplest possble postulates consider the motion of this wave.

ST <Fisher photo>

of the mutant gene, supposed independent of p. Suppose that the rate of diffusion per
generation across any boundary may be equated to

»
e

at that boundary, z being the co-ordinate measuring position in the linear habitat. Then p
‘must satisfy the differential equation

»
F -k hempr,

where  stands for time in generations.

Tts uso should

i varying
at different points of the range, due to variations in the density of the population, and to
variation in the sclective advantage of the mutant at different places. Further, the means

diffusion may involve an unequal drift in opposite dircctions, so that some pars of the
range predominate as centres of multiplication and others as centres of extinction. The
effects of all such complications can only be discussed by reference to the course of eventa
‘when they are absent. The purpose of equation (1) s to specify the simplest possible con-
ditions.

The use of

on the length of the wave. Tn reality
iffusion is & complox:proccss, compounded often of the diffusion of gametes, and that of
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Deterministic dynamic spatio-temporal modeling
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Deterministic dynamic spatio-temporal modeling

STUDY OF THE DIFFUSION
EQUATION WITH GROWTH OF THE
QUANTITY OF MATTER AND ITS APPLICATION
TO A BIOLOGICAL PROBLEM

A. Kolmogorov, 1. Petrovsky and N. Piskounov’

7.1 We start with the diffusion equation, considered for increased simplicity in
two dimensions:

avﬂca’"Jraz”] k>0 @1
3t Lax* o)’ : .
 and y are the coordinates of a point in the plane, ¢ s time, v1s the density of <Kol mogorov phOtO>

matter at the point (x, ) at the instant ¢. We now suppose that, in addition to
diffusion, growth of the quantity of matter takes place with a speed at a given
place and time that depends on the density there. Then we have

2% k[az" + W] + F@) ¥ 7.2)
—=k|l St [v) . .
ar ax*  ay?

Of course we are interested only in values of F(v) for which v > 0. We suppose
in what follows that F(v) is continuous and differentiable as often as necessary
with respect to v, and that in addition it satisfies the conditions:

FO) = F(1)=0; a3
F@) >0, 0<o<1; (7.4)
FO)=a>0; Fo)<a, O<v<1). 15)

Thus we are assuming that when v is extremely small the speed F(v) of growth
of v is proportional to v with constant of proportionality «, and that moreover
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Deterministic dynamic spatio-temporal modeling
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RANDOM DISPERSAL IN THEORETICAL POPULATIONS

By J. G. SKELLAM
The Nature Conservancy, London

Syxopsis

“The random-walk problem is adopted ‘point i
in living organisms. The solution is used as a basis for ™ stody of tho oxpansion of growing
‘population, and illustrative examples aro given. The law of diffusion is deduced and applied
to the understanding of the spatial distribution of population density in both linear and
two-dimensional habitats on various assumptions as to the mode of population growth or
decline. For the numerical solution of certain cases an iterative process is described and
a short table of a new function is given. The equilibrium states of the various analytical
models are considered in relation to the size of the habitat, and questions of stability are
investigated. A mode of population gmwth resulting from the mndnm scattering of the re-

is for a study on

ition. The extent
to biological situations, and some of the more important biological implications are briefly
considered.

1. INtropveTION
1-1. Tt is now fifty years since the publication of The Origin of the British Flora by Clement
Reid (1899). Tn it is suggested an interesting numerical problem on the rate of dispersal of
plants. Reid states: “Though the post-glacial period counts its thousands of years, it was not,
indefinitely long, and few plants that merely scatter their seed could advance more than
a yard in a year, for though the seed might be thrown further, it would be several seasons
before an oak for instance, would be sufficiently grown to form a fresh starting point. The
oak, to gain its present most northerly position in North Britain after being driven out by
the cold, probably had to travel fully six hundred miles, and this without external aid would
take something like a million years.
1:2. At the end of the last century, biologists, unlike physicists, rarely formulated such
problems in terms of simplified abstract models, due no doubt to the comparatively greater
complexity of biological systems. A beginning might have been made on the subject of
dispersal, for much of the necessary mathematical technique had been developed already,
and, in fact, had been utilized by Maxwell (1860) in developing a kinetic theory of gases
based on the behaviour of an infinity of perfectly elastic spheres moving at random. The
present century has witnessed the great success of the analytical method to quote only the
work of Fisher (1930), Haldane (1932) and Wright (1931) in evolutionary genetics, and
of Volterra (1931), Lotka (1925, 1939) and Kostitzin (1939) in ecology. Nevertheless,
biologists as a whole have been reluctant to develop the analytical as distinet from the
‘purely statistical approach, and apart from the pioneer work of Karl Pearson (1906) and of
Brownlee (1911), the mathematical aspects of the problem of dispersal have not received the
attention they deserve.

Dynamic Spatio-Temporal Statistical Models

Deterministic dynamic spatio-temporal modeling

200 Random dispersal in theoretical populations

25, Empirical confirmation. Tn practice thero is rarely sufficient information to construct
tho contours of population density with accuracy. One contour, however, can somefimes
* threshold density the survey)

at which the population begins to escape notice altogether.

Equation (4), derived initially on theoretical grounds, is well illustrated by the spread of
the muskrat, Ondatra zibethica L., in central Europe since its introduction in 1905. F)g 1,
based on Ulbrich (1930), ies for certain years. If
to accept such a boundary as being representative of a theoretical contour, Lhan ety
regard the area enclosed by that boundary as an cstimate of 7%, The relation between the
time and area is shown graphically in Fig. 2.

VArea

1910 1920 1930
Fig. 2
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Deterministic dynamic spatio-temporal modeling
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Statistical implementation

How do we incorporate deterministic PDEs in a statistical
framework?

@ Assume process can be observed (potentially with error)
@ Assume PDE is scientifically motivated, but not exact

@ Seek to estimate model parameters, given the data
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Statistical implementation

How do we incorporate deterministic PDEs in a statistical
framework?
@ Assume process can be observed (potentially with error)
@ Assume PDE is scientifically motivated, but not exact
@ Seek to estimate model parameters, given the data
Or alternatively:
@ Uncertainty in data
@ Uncertainty in spatio-temporal process
@ Uncertainty in parameters
°

[data, process, parameters|
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HIERARCHICAL MODELING
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Hierarchical modeling

Joint uncertainty: [y, u, 0]

We can factor joint distribution into a product of conditional
distributions:!

[y, u, 6] = [ylu, 6][u]6][6]

Berliner (1996), Hierarchical Bayesian time series models in Maximum entropy and Bayesian methods
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Hierarchical modeling

Joint uncertainty: [y, u, 0]

We can factor joint distribution into a product of conditional
distributions:!

[y, u, 6] = [ylu, 6][u]6][6]

e Data model: [y|u, 8]
@ Process model: [u|6)]

@ Parameter model: [0]

Berliner (1996), Hierarchical Bayesian time series models in Maximum entropy and Bayesian methods
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Hierarchical modeling

@ [y|u, 8]: Uncertainty in the observations

e Error in counts
o Experience of observers
o Detection probability

@ [u]@]: Uncertainty and complexity in spatio-temporal process
o diffusion and growth

@ species interactions
e important environmental covariates

@ [0]: Uncertainty in parameters
e Random variation in parameters

Williams et al. Dynamic Spatio-Temporal Statistical Models 34 /42



Dynamic spatio-temporal statistical modeling
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Descriptive vs. dynamic: revisited

Two approaches for modeling spatio-temporal processes:
o Descriptive (aka marginal, phenomenological)
e Dynamic (aka conditional, mechanistic)

1Heﬂey et al. (2017), Ecology 98:632-646
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Descriptive vs. dynamic: revisited

Two approaches for modeling spatio-temporal processes:
o Descriptive (aka marginal, phenomenological)
e Dynamic (aka conditional, mechanistic)

Data models:!
e Descriptive: [y|60pn]
o Difficult to derive realistic covariance matrices

e Dynamic: [y|u, 6]
o All of the complicated spatio-temporal structure can come from the
conditional mean, simplifying conditional dependence

1Hefley et al. (2017), Ecology 98:632-646
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Hierarchical DSTM

Data Model: y(s;,t) ~ [y(si, t)|u(s;, t), 4],

Process Models: Ougs;, t _ 88521 522 > [0(s, t)u(s, t)] + ~y(si)u(si, t),
u(si, 1) = (<),
(s, t) = g(X:B),
v(si, t) = h(W:a),

Parameter Model: 0 ~ [¢, a, 3,(]
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Computational implementation

Simple finite-difference discretization and Markov assumption implies the
vector difference equation

u; =Hu;_a: + H(b)ugi)m

where u; & u(s, t)
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Finite differencing

ui.t+1

dt

5.
dy?
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Hierarchical DSTM

Data Model: y;; ~ [yi,t|ui,t7¢]7

Process Models: u; = Hu;_a;¢,

u; = f(¢),
d: = g(XeB),
Y = h(Wta)’

Parameter Model: 0 ~ [¢, a, 3, (]
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Applications of DSTM statistical models

1
Hooten and Wikle (2008), Environmental and Ecological Statistics 15:59-70
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Applications of DSTM statistical models

1
Hooten et al. (2010), Spatial and Spatio-temporal Epidemiology 1:177-185
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