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Motivation, History, and Fundamentals
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Why Statistical Decision Theory?

Decisions are made at every step in scientific investigation

Data collection
Model selection
Summary statistics
Management

SDT provides a cohesive framework for decision making

Data collection–Dynamic adaptive sampling
Model selection–Optimal prediction
Summary statistics–Bayes rules
Management actions–Optimal management
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History

Bayes’ Theorem appeared in “An
Essay Towards Solving a Problem in
the Doctrine of Chances”

“Aldrich suggests that we interpret
[Bayes’ definition of probability] in
terms of expected utility, and thus

that Bayes’ result would make sense
only to the extent to which one can
bet on its observable consequences.”

-Stephen Fienberg, 2006.
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History

Laplace published “Memoire sur la
Probabilité des Causes par las
Évènements”

Elaborate example of inverse
probability

Uniform prior distributions

Methods for choosing estimators
that minimize posterior loss
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History

Fisher published “On the
Mathematical Foundations of
Theoretical Statistics”

Rejected inverse probability

Grounded his theory on frequency
interpretation of probability

Obviated the need for prior
distributions

Introduced likelihood

Tests of significance
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History

Fisher on Probability and Decisions

“We aim, in fact, at
methods of inference
which should be equally
convincing to all rational
minds, irrespective of any
intentions they may have
in utilizing the knowledge
inferred.”
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History

Wald published “Statistical Decision
Functions”

Unified statistical theory by
treating statistical problems as
special cases of zero-sum
two-person games

Statistical inference was viewed
as a special case of decision
theory (c.f., Von Neumann and
Morgenstern 1944)
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History

“It is well recognized that the
statistical estimation theory
should and can be organized
within the framework of the
theory of statistical decision
functions (Wald 1950)”

Akaike, H. 1973. Information
theory and an extension of the
maximum likelihood principle.
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History

Savage published “The Foundations
of Statistics”

Set the stage for Bayesian
revival

1763 1774 1922 1931 1934 1949 1954 1961
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History

“Decision theory is the best
and most stimulating, if not
the only, systematic model of
statistics.”

1763 1774 1922 1931 1934 1949 1954 1961
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History

Raiffa and Schlaifer published
“Applied Statistical Decision
Theory”

Methods of Fisher, Neyman,
and Pearson did not address the
main problem of a businessman:
how to make decisions under
uncertainty

Developed Bayesian decision
theory

1763 1774 1922 1931 1934 1949 1954 1961
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F.P. Ramsey

B. De Finetti

J.M. Keynes

H. Jeffreys

D.V. Lindley

D.R. Cox

J.W. Tukey

A. Birnbaum

M. Kendall
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Fundamentals of SDT
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Inferential Steps

1 Identify possible states of nature (support)

2 Assign prior probabilities

3 Assign model processes (for potentially many models)

4 Apply Bayes theorem to obtain posterior probabilities from data
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Decision Steps

1 Identify possible states of nature (support)

2 Assign prior probabilities

3 Assign model processes

4 Apply Bayes theorem to obtain posterior probabilities from data

5 Enumerate possible decisions

6 Assign a loss function

7 Choose decision that minimizes expected loss
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Data	

(y)	


Conceptual 
Model	


Potential 
Actions	


a	


Loss	

L(θ, a)	


Likelihood	

[y| θ]	


Prior	

[θ]	


Optimal Decision	

a*=argmina {∫ ∫L(θ, a)[y|θ]dy[θ]dθ}	


Williams, P.J., and M.B. Hooten. 2016. Combining statistical inference and decisions in
ecology. Ecological Applications.
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Basic Elements

Θ: potential states of nature

θ: true state of nature

A : potential actions

a: a specific action, possibly a function of data (i.e., δ(y))

L : Θ×A 7→ R: loss function

L(θ, a): loss incurred if action a is made and θ is true
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Example: Measurement With Uncertainty

0 1 2 3 4 5
θ
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Types of Loss

Squared Error Loss:
L(θ, a) = (θ − a)2

Linear Loss:

L(θ, a) =

{
c1(θ − a) if θ > a

c2(a− θ) if θ < a

0–1 Loss:

L(θ, a) =

{
0 if θ = a

1 if θ 6= a
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Risk

Frequentist Risk

Bayesian Expected Loss

Bayesian Risk
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Decision Rule δ(y)

Y : a random variable that depends on θ

Y : the sample space of Y

y : a realization from Y

δ : Y 7→ A

(for any possible realization y ∈ Y , δ describes which action to take)
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Decision Rule Example

H0 : θ ≥ 0

Ha : θ < 0

δ1(y) =

{
a1 = Reject H0 ȳ < −0.3

a2 = Fail to reject H0 ȳ ≥ −0.3

δ2(y) =

{
a1 = Reject H0 ȳ < −0.5

a2 = Fail to reject H0 ȳ ≥ −0.5

Perry Williams Statistical Decision Theory 18 / 50



Frequentist Risk

How much you expect to lose when using a decision rule ∀y ∈ Y

R(θ, δ) =E [L(θ, δ(y))]

=

∫
Y
L(θ, δ(y))[y |θ]dy
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Frequentist Risk and p-values

δ1(y) =

{
a1 = Reject H0 ȳ < −0.3

a2 = Fail to reject H0 ȳ ≥ −0.3 L(θ, δ(y)) =


1 if reject H0 and θ ≥ 0

1 if fail to reject H0 and θ < 0

0 otherwise
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Frequentist Risk
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Decision Theory is Inherently Bayesian

Goal of Decision Theory: Make a decision based on our belief in the
probability of an unknown state

Frequentist Probability: The limit of a state’s relative frequency in a
large number of trials

Bayesian Probability: Degree of rational belief to which a state is
entitled in light of the given evidence
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Bayesian Expected Loss

Probability distribution assigned to θ

Prior probability distribution: [θ]

Posterior probability distribution: [θ|y ]

Bayesian Expected Loss: the loss averaged over the
distribution of θ.
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Bayesian Expected Loss

ρ(a) = EθL(θ, a) =
∫

Θ L(θ, a)[θ]dθ

ρ(a) = Eθ|yL(θ, a) =
∫

Θ L(θ, a)[θ|y ]dθ

Bayes Rule: a∗ = argmina(ρ(a))
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Bayesian Expected Loss
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Bayesian Expected Loss
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Bayes Risk

Mathematical Relationship Between Frequentist Risk and Bayes Expected
Loss:

r(a) =

∫
Θ

{∫
Y
L(θ, a)[y |θ]dy

}
[θ]dθ

Note: [y |θ][θ] = [θ|y ][y ]

r(a) =

∫
Y

{∫
θ

L(θ, a)[θ|y ]dθ

}
[y ]dy
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Bayesian Expected Loss vs. Frequentist Risk

R(θ, δ) integrates over y , but y is known (i.e., data)

R(θ, δ) is a function of unknown θ

R(θ, δ) doesn’t make use of auxiliary information (e.g., prior
knowledge)

δ that minimizes ρ(δ) also minimizes r(δ) (don’t need to integrate
over hypothetical replicates of y)

Perry Williams Statistical Decision Theory 28 / 50



Bayesian Point Estimation
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Bayesian Point Estimation

Suppose we want to summarize a posterior distribution [θ|y ] with a
point estimate

We want to minimize the information lost using the point estimate to
summarize [θ|y ]

Is the choice of point estimate arbitrary?

Bayes Estimator: Bayes Rule for point estimation
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Bayes rule for squared-error loss

ρ(a) =

∫
θ
(θ − a)2[θ|y ]dθ

d

da
ρ(a) = 2E [θ|y ]− 2a

2E [θ|y ]− 2a
set
= 0

a∗ = E [θ|y ]
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Implied Loss of Posterior Mean

a = E [θ|y ]

f ′′(a)(a−E [θ|y ]) = 0

∫
f ′′(a)(a− E [θ|y ])da =

∫
(f ′(a)(a− θ)− f (a) + g(θ))[θ|y ]dθ

L(θ, a) =f ′(a)(a− θ)− f (a) + g(θ)
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Bayes rule for absolute-error loss

ρ(a) =

∫
Θ
|θ − a|[θ|y ]dθ

d

da
ρ(a) = −P(θ ≥ [a|y ]) + P(θ ≤ [a|y ])

− P(θ ≥ [a|y ]) + P(θ ≤ [a|y ])
set
= 0

a∗ = median([θ|y ])
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Bayes rule for 0–1 loss

ρ(a) =

∫ a2

a1

0[θ|y ]dθ +

∫ a1

−∞
1[θ|y ]dθ +

∫ ∞
a2

1[θ|y ]dθ

d

da
ρ(a) =[a1|y ]− [a2|y ], as a1 → a← a2

a∗ = mode([θ|y ])
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Asymmetric Distributions
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Bayesian Point Estimation

Bayesian point estimation is NOT arbitrary!

Different loss functions yield different point estimates.

SEL: Posterior mean
Absolute Loss: Posterior median
0–1 Loss: Posterior mode

A choice of point estimator implies decision maker’s choice of loss
function (or class of functions).
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Management Decisions
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Henslow’s Sparrow

Williams, P.J., and M.B. Hooten. 2016. Combining statistical inference and decisions in ecology. Ecological Applications.
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Big Oaks National Wildlife Refuge
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Optimal Prescribed Fire Return Interval?
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Non-Optimal Solution
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Elements for SDT

Data: Density estimates

Prior Information: Mean henslow’s sparrow densities at other sites
(Herkert and Glass 1999)

Loss Function related to cost and management objectives
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Response-to-fire model

yj ,t ∼Poisson(Ajλj ,t),

log(λj ,t) = x ′
j ,tβ + ηj ,

β ∼ Normal(µ, σ2I ),

ηj ∼ Normal(0, σ2
η).
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Cumulative abundance as a derived parameter

Na = lim
T̃→∞

20
∑8

j=1

∑T̃
t=T+1 Aiλj ,t

T̃ − T

j=1,	  a=3 A1λ1,1 A1λ1,2 A1λ1,3 A1λ1,1 A1λ1,2 A1λ1,3 … A1λ1,1 A1λ1,2 A1λ1,3

t=1 t=2 t=3 t=4 t=5 t=6 … t=
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Posterior Distributions
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Axioms of Henslow’s Sparrow Management

1 Frequent fire intervals are more expensive

2 More birds are better

3 The relative importance of cost decreases as abundance increases
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Henslow’s sparrow loss function

L(θ, a) =

{
α0(a) + α1(a)Na,θ, Na,θ < 1835

0, Na,θ ≥ 1835
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Convolution of Loss Function and Posterior Distribution
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Bayes Expected Loss
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Model Selection Example

Posterior predictive distribution

[ỹ|y,m] =

∫
[ỹ|y,θ(m)][θ(m)|y]dθ(m)

Posterior predictive loss (Gelfand and Ghosh 1998)

L(ỹ, y, a) =L(ỹ, a) + kL(y, a)

Posterior predictive expectation of loss for model m, and action a.

Eỹ|y,mL(ỹ, y, a)
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Summary

SDT combines statistical analyses and decision theory

Implications for data collection, point estimation, and model selection

Ecological/Management applications
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