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Summary
1. Species distribution and abundance are critical population characteristics for efficient

management, conservation, and ecological insight. Point process models are a powerful

tool for modeling distribution and abundance, and can incorporate many data types,

including count data, presence-absence data, and presence-only data. Aerial photographic

images are a natural tool for collecting data to fit point process models, but aerial images do

not always capture all animals that are present at a site. Methods for estimating detection

probability for aerial surveys usually include collecting auxiliary data to estimate the

proportion of time animals are available to be detected.

2. We developed an approach for fitting point process models using an N -mixture model

framework to estimate detection probability for aerial occupancy and abundance surveys.

Our method uses multiple aerial images taken of animals at the same spatial location to

provide temporal replication of sample sites. The intersection of the images provide

multiple counts of individuals at different times. We examined this approach using both

simulated and real data of sea otters (Enhydra lutris kenyoni) in Glacier Bay National Park,

southeastern Alaska.

3. Using our proposed methods, we estimated detection probability of sea otters to be 0.76,

the same as visual aerial surveys that have been used in the past. Further, simulations

demonstrated that our approach is a promising tool for estimating occupancy, abundance,

and detection probability from aerial photographic surveys.

4. Our methods can be readily extended to data collected using unmanned aerial vehicles, as

technology and regulations permit. The generality of our methods for other aerial surveys

depends on how well surveys can be designed to meet the assumptions of N -mixture

This article is protected by copyright. All rights reserved. 
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models.

Key words abundance estimation, aerial photographic surveys, availability bias, detection bias,

detection probability, occupancy estimation, perception bias, point process models, sea otters

Introduction
Aerial surveys are an important tool for estimating abundance and distribution of vertebrate

populations. Methods for design and data analysis of aerial surveys have been developed to

accommodate visual observations where observers count animals from aircraft (Siniff & Skoog

1964, Goddard 1967; 1969, Jolly 1969a;b, Watson et al. 1969, Caughley & Goddard 1972,

Pennycuick & Western 1972, Caughley 1974, Certain & Bretagnolle 2008), and for photographic

survey methods (Leedy 1948, Leonard & Fish 1974, Boyd 2000, Bechet et al. 2004, Buckland

et al. 2012, Conn et al. 2015, Ver Hoef & Jansen 2014). Undercounting animals from aircraft

presents a major estimation problem with both visual and photographic aerial surveys (Graham &

Bell 1969, Caughley 1974). Animals are undercounted because they are not available to be

counted (e.g., underwater as in Lukacs et al. 2010, termed availability bias), or observers miss

animals that are available to be counted (termed perception bias; Marsh & Sinclair 1989). Aerial

images improve perception bias, but not necessarily availability bias (Leonard & Fish 1974,

Gibbs et al. 1988, Bayliss & Yeomans 1990, Frederick et al. 2003). For example, many seabirds

and marine mammals are virtually certain to be detected in images if they are at the surface of the

water, but animals may be diving beneath the surface of the water and unavailable to be

photographed (Buckland et al. 2012, Conn et al. 2014). Aerial images alone typically do not

provide sufficient information for estimating availability, and auxiliary information is usually

required to estimate absolute abundance. For example, activity budgets or time spent diving

underwater can be estimated from telemetry devices including VHF transmitters, satellite-linked

transmitters, or time-depth recorders (Bechet et al. 2004, Heide-Jørgensen et al. 2007, Conn et al.
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2014). Often, aerial image data are easily obtainable, but auxiliary data may be more challenging

to acquire due to financial, logistical, or regulatory constraints, precluding estimation of

availability. Even when auxiliary information can be collected, there is often a disparate scale of

inference between auxiliary data and aerial image data, potentially introducing a variety of

statistical challenges for modeling and inference (Gotway & Young 2002). Further, it is difficult

to determine whether correction factors based on behavioral data (e.g., dive times) are appropriate

because corrections may not apply to animals engaged in different activities such as feeding or

resting; activities that might be difficult to characterize from an aircraft (Hiby & Lovell 1998).

Another method for estimating availability is to use multiple aircraft in tandem, where

observers in each aircraft count animals independently (Hiby & Lovell 1998). Using aircraft in

tandem is twice as expensive as using one aircraft, and transects of each aircraft might not overlap

due to error in GPS locations and misaligned flight paths. Further, methods for using aircraft in

tandem have relied on identifying individual animals (i.e., duplicates seen by each aircraft) which

is often problematic (Hiby & Lovell 1998).

In light of these constraints, we describe a point process model that leverages an N -mixture

framework for simultaneously estimating detection probability, occupancy, and abundance from

aerial images (Royle 2004). The N -mixture model fits naturally within the framework of a point

process model. The N -mixture model is advantageous in that it does not rely on data auxiliary to

aerial images. Data required to fit N -mixture models can be collected from a single aircraft, and

individual animals do not need to be uniquely identified. In addition, aerial photographic images

provide a permanent record that is available for independent verification, may be used for

automated detection, and allows for quantification of habitat covariates (Martin et al. 2012,

McNabb et al. 2016). Photographic sampling methods can also be extended to unmanned aerial

vehicles, which are relatively new low-cost platforms that can be used to quantify wildlife and

their habitats (Hodgson et al. 2013, Sweeney et al. 2015).

This article is protected by copyright. All rights reserved. 
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An ecological application motivating the methods we present involves the use of aerial

photographic survey methods for estimating the distribution and abundance of sea otters (Enhydra

lutris kenyoni) in Glacier Bay National Park (GBNP), southeastern Alaska. Sea otters were

recently identified as a vital sign for long-term monitoring in GBNP because of their role as a

keystone species and their influence in structuring nearshore marine communities (Estes &

Palmisano 1974). Data on sea otter abundance in GBNP were formerly collected using

design-based, visual aerial surveys, where observers counted sea otters along randomly selected

transects (Bodkin & Udevitz 1999, Williams et al. 2017). Detection probability for the

design-based survey was estimated by conducting intensive searches at 469 randomly-selected

locations from the design-based survey that contained sea otters. At these random sites, observers

first conducted the design-based survey along the transect and counted individuals along the strip.

The plane then deviated off the transect to conduct intensive searches which entailed circling a

group of otters five times at a given speed and altitude (Bodkin & Udevitz 1999). The number of

circles was based on the estimated dive duration or aerobic dive limit of sea otters. The additional

survey effort allowed observers to obtain more precise counts of sea otters, including individuals

that were underwater and not available for detection during the original design-based phase. The

National Park Service is developing an aerial survey method that extends previous survey

methods with the specific objectives of 1) improving safety and reducing risk associated with

aerial surveys, 2) decreasing cost and optimizing efficiency, 3) increasing the number of pilots

capable of conducting the surveys, 4) creating a permanent record that can be independently

verified, 5) reducing observer bias, 6) quantifying associated habitat covariates from imagery, 7)

developing a platform and survey design that is capable of being extended to unmanned aerial

vehicles, and 8) improving precision of occupancy and abundance estimates. The use of aerial

images improves objectives 1–7, relative to the original surveys. However, objective 8 relies on

accurate and precise estimation of detection probability. Thus, we developed field-based methods

This article is protected by copyright. All rights reserved. 
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and an associated statistical framework for simultaneously estimating occupancy, abundance, and

detection probability of animals using only aerial images, where a subset of images overlap in

space. We demonstrate our approach by first applying our framework to simulated data of sea

otters in GBNP. We conducted a pilot study in which we assessed our ability to collect temporally

replicated images of spatially referenced sites containing sea otters. Finally, we estimated

abundance and detection probability of our sampled sites.

Methods
Individuals in a population exist as points in space and time and therefore can be modeled as a

spatio-temporal point process (Fig. 1; Hefley & Hooten 2016). A point process is a stochastic

process that governs the location of a set of points {si} in some set D ⊂ Rd (Moller &

Waagepetersen 2003, Diggle 2013, Cressie & Wikle 2011). We consider the two-dimensional

space D ⊂ R2 that describes a study area of interest during time interval [0, T ]. We let

s = (latitude, longitude)′ represent any 2× 1 vector of coordinates in D, and the set of

coordinates {si ∀i} represents the locations of animals in D. A point process N(·) is

characterized by counting the number of points (e.g., animals) that belong to various measurable

subsets A ⊂ D ⊂ R2 (e.g., A represents the subset of area in D captured by aerial images). Let

N(A, t) represent a count of the true number of animals in A during time t. A fundamental

quantity of interest of a point process is the expected abundance in A. The expected abundance

can be calculated in terms of a locally integrable intensity function λ(s, t). The intensity function

describes the expected abundance of an infinitely small area ds centered at point s. The expected

abundance of the bounded subset A from time t to t+ ∆t can be obtained by integrating the

intensity function over A from time t to t+ ∆t,

λ(A, t) = E(N(A, t)) =

∫
A

∫ t+∆t

t

λ(s, t)dtds <∞.

This article is protected by copyright. All rights reserved. 
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If λ(s, t) varies in space and/or time, and is deterministic, and we assume N(A1, t) and N(A2, t)

are independent whenever A1 ∩ A2 = ∅, where ∩ represents the intersection, then N(A, t) is an

inhomogeneous Poisson point process and

N(A, t) ∼ Poisson(λ(A, t)) (1)

(Moller & Waagepetersen 2003, Cressie & Wikle 2011). Similarly, if λ(s, t) is a stochastic

process, then N(A, t) is known as a Cox process (Cox 1955). We consider inhomogeneous

Poisson processes for the remainder of the paper; a number of authors provide details on more

general point processes that could be used in our framework (e.g., Moller & Waagepetersen 2003,

Illian et al. 2008, Cressie & Wikle 2011, Banerjee et al. 2014, Baddeley et al. 2015). An

important derived quantity of Eq. 1 is the probability that N(A, t) > 0 (i.e., the occupancy

probability, φ(A, t)). Useful distribution models predict both occupancy and abundance (Oppel

et al. 2012). The spatio-temporal occupancy probability is

φ(A, t) = P (N(A, t) > 0) = 1− e−λ(A,t) (2)

(see Hefley & Hooten 2016, Williams et al. 2017).

A set of n aerial images taken at locations {ci}ni=1 capture information on bounded

subregions Ai, and therefore can be used to characterize the point process (Cressie & Wikle

2011). We denote counts of animals on an image of site Ai taken during time t as y(Ai, t), where

the area captured by the aerial image is denoted as |Ai|, and in practice
∑n

i=1 |Ai| << |D|.

Counts of individuals are usually obtained by examining images post-flight, and summing the

number of individuals within the image (see Field and lab methods, below). Counts often contain

false negatives; some proportion of animals within Ai will not appear on images or are missed

when investigators count the animals. Therefore, we adopt the most commonly used model for

This article is protected by copyright. All rights reserved. 
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false negatives,

y(Ai, t) ∼ Binomial(N(Ai, t), p(Ai, t)), (3)

where p(Ai, t) is the detection probability, potentially varying in space and time. If occupancy is a

state variable of interest, Eq. 3 reduces to I{y(Ai,t)>0} ∼ Bernoulli(φ(Ai, t)), where I{y(Ai,t)>0} is

an indicator function that equals one when y(Ai, t) > 0, and zero otherwise (Hefley & Hooten

2016). Note that p(Ai, t) is a composite parameter of both the probability of an observer counting

an individual on the image, conditional on it being available to be counted (p1(Ai, t)), and the

probability an individual is available to be counted (p2(Ai, t)). That is,

p(Ai, t) = p1(Ai, t)p2(Ai, t). If aerial images have sufficient resolution such that the observer

detection probability p1(Ai, t) = 1, then p(Ai, t) = p2(Ai, t). For our application, we assume

p(Ai, t) = p2(Ai, t). When this assumption is not valid, other techniques could be used to

estimate p1(Ai, t) when individuals are counted on images (e.g., double observer methods as used

in Buckland et al. 2012). Following the terminology of Berliner (1996), Eq. 3 is a data model and

Eq. 1 is a process model (e.g., an inhomogeneous Poisson process model), and the hierarchical

formulation of the model is

y(Ai, t) ∼ Binomial(N(Ai, t), p(Ai, t)),

N(Ai, t) ∼ Poisson(λ(Ai, t)),

λ(Ai, t) =

∫
Ai

∫ t+∆t

t

λ(c, t)dtdc

log(λ(c, t)) = x(c, t)′β,

(4)

where x(c, t) is a vector of covariates for locations c, time t, and β is a vector of parameters to be

estimated.

To estimate detection probability, p, we assume a subset of Ai and Ak(k ∈ I ; i 6= k)

This article is protected by copyright. All rights reserved. 
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intersect (Fig. 1). That is, an aerial image of subregion Ai taken at time j = j1 overlaps an image

of subregion Ak taken at time j = j1 + ∆j, where ∆j is sufficiently small so it can be assumed

that the point pattern realization is static, and in practice, ∆j << ∆t (c.f. primary and secondary

sampling periods sensu, Kendall & Nichols 1995, for t and j, respectively). We can view the

union of Ai and Ak as 3 distinct bounded sites; Ai ∩Ack, Aci ∩Ak, and Ai ∩Ak (Fig. 1), where “c”

represents the complement. Counts of individuals (or alternatively, occupancy status) in the

subregion Ai ∩ Ak can be obtained from each image (Fig. 1). Counting individuals from each

image in the intersection Ai ∩ Ak provides temporal replication, y(Ai ∩ Ak, j, t), j = 1, ..., J , and

can be used to estimate p in an N -mixture model framework (Royle 2004). That is, assuming ∆j

is sufficiently small to ensure the population being sampled is closed with respect to movement,

mortality, and recruitment, and conditional on N(Ai ∩ Ak, t), y(Ai ∩ Ak, j, t) may be viewed as

independent and identically distributed binomial random variables

y(Ai ∩ Ak, j, t) ∼ Binomial(N(Ai ∩ Ak, t), p(Ai ∩ Ak, t))

(Royle 2004). Thus, the Poisson process assumes that when A1 ∩ A2 = ∅, N(A1), and N(A2) are

independent and Poisson, conditional on λ(A1) and λ(A2), respectively. The N -mixture model

assumes that when A1 ∩ A2 6= ∅, counts of individuals in the intersection are independent and

binomial, conditional on N(A1 ∩ A2) and p(A1 ∩ A2).

It is not necessary to collect intersecting images at all spatial locations, but collecting

intersecting images in a variety of environmental conditions provides sufficient information to

estimate how detection probability may vary in response to spatial or temporal covariates. For

example, heterogeneity in detection probability could be modeled as

logit(p(Ai ∩ Ak, t)) = w(Ai ∩ Ak, t)′α, (5)

This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le
Perry J. Williams et al. · Estimating abundance with aerial image data

where w(Ai ∩ Ak, t) are covariates associated with detection probability collected at Ai ∩ Ak at

time t, and α are parameters to be estimated. To simplify notation in what follows, we assume

that all sites (i.e., Ai, Ak, Ai ∩ Ak, Aci ∩ Ak, Ai ∩ Ack) are represented with i.

The parameters of our model (p, α, β) can be estimated using either Bayesian methods

(Royle & Dorazio 2008), or maximum likelihood methods (Royle 2004). Assuming a Bayesian

hierarchical specification of the model, the full Bayesian posterior distribution of Eq. 4 and 5 is

[N,α,β|Y] ∝
n∏
i=1

T∏
t=1

{ Ji∏
j=1

{
[y(Ai, j, t)|N(Ai, t),α]

}
[N(Ai, t)|β]

}
[α,β], (6)

where we use the square-bracket notation [a|b] to represent the probability density or mass

function of variable a given variable b (Gelfand & Smith 1990).

Application: sea otters in Glacier Bay National Park
We conducted a simulation study to evaluate our model (Appendix S1). After our simulation

study, we developed and implemented field methods to assess the logistics of collecting the

necessary data required to fit our model (Appendix S2). Although Eqs. 4 and 6 are described in

sufficient generality to incorporate relevant spatio-temporal processes for time t = 1, . . . , T , to

simplify demonstration, our example assumes t = 1.

Simulated data

We simulated sea otter abundance data across GBNP (Appendix S1) using the model described in

Eq. (6), and included an intercept and four covariates to associate abundance to local conditions

in GBNP. The covariates were ocean depth, distance to shore, slope of the ocean floor, and

shoreline complexity. We based the relationship (positive or negative) between abundance

intensity and parameter values on Williams et al. (2017). We also allowed detection probability to

vary in space. We simulated values of w(si) using a Bernoulli distribution with success

This article is protected by copyright. All rights reserved. 
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probability equal to 0.5. Specifically,

log(λ(si)) = −2.4 + 0.75depth(si)− 0.75distance(si) + 0.4slope(si)− 0.4complexity(si),

logit(p(si)) = 1 + 0.5w(si).

We simulated 8,895 images from 50 transects placed randomly across GBNP, and selected 100

random locations containing sea otters where one additional replicate image was taken (Appendix

S1). We then fit a Bayesian hierarchical N -mixture model to the simulated data. We assumed

vague prior distributions for all parameters. After fitting the model, we compared the estimated

posterior distributions to the parameter values that were used to simulate the data. We also plotted

the true expected abundance (λ(s)) and occupancy (φ(s)) and the estimated expected abundance

and occupancy (Fig. 3). All posterior distributions had good coverage of true parameter values

(Fig. 2), and the estimated expected abundance and occupancy probability represented the truth

well (Fig. 3).

Field and lab methods

We developed a pilot study to assess the ability of obtaining intersecting aerial images of groups

of sea otters in GBNP. We obtained aerial digital imagery to estimate abundance and detection of

sea otters. Three separate aerial photographic surveys were conducted during July and September

2016 in Glacier Bay from a de Havilland Canada DHC-2 Beaver single-engine high-winged

aircraft (Ward Air Inc., Juneau, Alaska). The aircraft was flown at approx. 213–250 m at 157–166

km/hr. Overlapping digital photographic images of sea otter groups were taken directly under the

plane using a vertically-aimed digital camera (Nikon D810, 36.3 megapixel) with an 85 mm focal

length lens (Zeiss F/1.4 ZF.2). The camera was attached to a tripod head and mounted to a

plywood platform that was secured in the belly porthole of the aircraft. The camera captured an

image every second, using a digital timer (Nikon MC36) that was attached to the camera and

This article is protected by copyright. All rights reserved. 
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operated by the primary observer. A second observer monitored movement of individual sea

otters to determine if any sea otters were dispersing or moving in or out of the photograph

footprint. After one transect was complete (i.e., one survey occasion), the pilot attempted to fly

the same transect (using a combination of a GPS and visual cues) to obtain replicate images. At

one site, otters dispersed in varying directions after the initial photograph, and therefore, we

removed it from analysis because it would potentially violate the closure assumption. The

speed–altitude combination did not appear to have an observable influence on sea otter behavior.

An onboard global positioning system (GPS; Garmin 76 CSX), with an external antenna,

was used to record the track line and position of the plane (latitude, longitude, altitude) at 1-sec

intervals. Each digital image (7,360×4,912 pixel JPG) covered approximately 90 m× 60 m at the

surface of the water with a 1.64 cm pixel resolution. The rate of image capture and dimensions of

the photographed area provided a linear mosaic of overlapping images with approximately 30 m

of overlap between adjacent images.

The latitude, longitude, and altitude from the track line were downloaded and written to the

EXIF headers of each digital image to permanently embed the location data into each image using

RoboGeo v6.3. All images were reviewed using ACDSee Pro 9 (ACD Systems International,

Incorporated). From each survey occasion at each site, one image was selected based on its clarity

and location of sea otters with respect to the boundary of the photographed area. Although images

within one survey occasion created a linear mosaic of intersecting images and could be used as

temporal replicates, we selected one image from each survey occasion to use in our analysis.

Selecting one image from each survey occasion increased ∆j between temporal replicates,

increasing the probability that individual sea otters would make state transitions from available to

unavailable (or vice versa; i.e., so subsequent images were more likely to be independent).

Images where a raft of sea otters was in the center of the image were preferred to help ensure

closure assumptions were reasonably met. The best image for each group of sea otters and

This article is protected by copyright. All rights reserved. 
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sampling occasion was selected and imported into Count Clusters (Dynamic Ventures,

Incorporated, Cupertino, California), a custom software program that can be used for counting

objects in digital images. An experienced observer marked each sea otter in the image. The total

number of individuals per image as well as attribute data from each digital image including date,

time, latitude, longitude, and altitude were exported to a file for analysis. All analyses were

conducted in R version 3.2.3 (R Core Team 2013).

Our field-based methods were associated with a pilot study with limited spatial coverage,

thus, we did not attempt to estimate abundance for all of GBNP. We collected 60 images from 20

locations containing sea otters (Table 1). We focused our estimates of detection probability and

abundance in the sites we surveyed. We visited each site multiple times. However, visiting each

site multiple times is not required, and monitoring designs can be made more efficient by

coupling the information from sites with multiple visits and sites that are visited once, provided

the same standards that are used to collect and analyze overlapping photographs are used in all

photographs.

The estimated posterior distributions for detection probability and abundance for these data

are provided in Fig. 4. The mean of the posterior distribution, optimal for squared-error loss (e.g.,

Williams & Hooten 2016), for detection probability from the aerial image data from 20 sites

equaled 0.76, the same as the mean of the posterior distribution from the original design-based

survey of sea otters estimated from 469 intensively searched sites (Williams et al. 2017). We

assessed model fit using Bayesian p-values (Hobbs & Hooten 2015). We used the χ2

goodness-of-fit discrepancy function for calculating Bayesian p-values (Gelman et al. 2014). The

Bayesian p-value was 0.52, suggesting no lack of model fit.

This article is protected by copyright. All rights reserved. 
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Discussion
We presented a spatio-temporal point process model, in combination with a novel application of

N -mixture models fitted to digital aerial survey data when detection probability is < 1 due to

animals being unavailable for detection. We used this framework to simultaneously estimate

detection probability, occupancy probability, and total abundance based on an intensity surface

that is a realization of a continuous spatio-temporal inhomogeneous Poisson process. Applying

our model to both simulated data and real data on sea otters collected during a pilot study

demonstrated that this framework is a promising tool for estimating occupancy, abundance, and

detection probability from aerial image surveys. Additionally, the spatio-temporal point process

model is sufficiently flexible to accommodate count data, presence-absence data, presence only

data (Dorazio 2014, Fithian et al. 2015, Hefley & Hooten 2016), and spatio-temporal dependence

in ecological processes (Cressie & Wikle 2011).

Model estimates based on simulated data recovered true parameters well. This was not

surprising, as previous simulation studies have shown that N -mixture models usually perform

well for estimating abundance and detection probability for a variety of conditions with varying

level of detection probability, few replicate temporal counts, and few sites (see: Kéry et al. 2005,

Hunt et al. 2012, Couturier et al. 2013, Yamaura 2013, Dennis et al. 2015, McCaffery et al.

2016). The novel application in our simulation was the use of the intersection of two overlapping

spatial sites as temporal replication. Although the formulation of the model has been used for

other purposes, our application extends it to new situations involving survey design. For example,

if known-radius point counts (e.g., Henry et al. 2015) are conducted to collect data to estimate

abundance, sites could be chosen such that neighboring sites intersect to make temporal

replication more efficient than replicating visits to sites over multiple days.

The general applicability of these methods for aerial images depends on whether sample

This article is protected by copyright. All rights reserved. 
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sites are closed with respect to movement, mortality, and recruitment. Mortality and recruitment

are unlikely during the course of an aerial survey for most populations. However, the movement

assumption may not be valid for highly mobile animals. In temporally replicated counts, we

assume that the set of animals that occupy a site (but not necessarily observed in the site), is

unchanged. Thus, if animals move in or out of the area in the time difference ∆j between images,

the closure assumption will be violated and estimates of detection probability could be biased

depending on how animals disperse in and out of sites. If dispersal is random, bias will likely be

small. If animals systematically disperse away from a site after an initial survey, perhaps in

response to the aircraft, then bias may be large, unless this dispersal can be modeled. For

example, if it is possible to uniquely identify some individuals in repeated images, movement

models could be used to explicitly account for animal movement among photographs (e.g., Royle

& Young 2008, Hooten et al. 2017).

Another assumption of the N -mixture model is that organisms are detected independently

of each other (Royle & Dorazio 2008, Martin et al. 2011, Dorazio et al. 2013). This assumption

may be violated if behavior among organisms is correlated, and affects their probability of being

detected (e.g., manatees surfacing for air in groups; Martin et al. 2011). Martin et al. (2011)

developed an extension to the N -mixture model for accounting for correlated behavior and

non-independent detection of individuals. Our goodness-of-fit evaluation for the sea otter data

suggested no lack of model fit, and therefore, there was no evidence that this assumption was

violated. However, alternative models (e.g., negative binomial Ver Hoef & Boveng 2007) can be

implemented when violations, or lack of model fit occur.

There are at least two design considerations that can help prevent violations in the closure

assumption. The first consideration applies mainly to populations that congregate in groups (e.g.,

rafts of sea otters, flocks of birds, pods of whales, rafts of pinipeds), or are relatively immobile

among replicate surveys, and is to use a camera, lens, and altitude combination that produces
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images that have a larger footprint (c.f., plot size; Efford & Dawson 2012). A larger footprint may

provide a buffer around a group of animals, requiring more time for individuals to move out of the

footprint (or move from outside the footprint into the footprint). In our application, sea otter

movement between subsequent photographs was small, relative to the footprint of the

photographs we used. Further, we selectively chose photographs with groups of sea otters located

in the center of photographs, reducing the opportunity sea otters had to leave the area captured by

photographs. Thus, although it is possible that there was some movement into or out of areas

captured by replicate photographs, our survey design minimized this possibility, (which was

corroborated by observations from the secondary observer), and any violation of this assumption

was small (the secondary observer never witnessed it), and likely negligible for estimating

abundance and detection probability of sea otters in GBNP. The second consideration is to reduce

time between survey occasions (i.e., decrease ∆j) limiting the time animals have to move out of

the footprint. During our pilot survey, it required approximately 2–3 minutes to fly over a group

of sea otters twice. However, because we acquired several images each time we flew over sea

otters, and neighboring images contained overlap, we could have used these intersecting regions

to provide temporal replication, minimizing the probability that any otter moved out of the area

captured by the intersecting images. However, using multiple images within a transect may result

in neighboring images that are not independent, and therefore we selected one image from each

transect. Additionally, multiple cameras can be mounted on an aircraft such that one faces

forward and one faces backward, programmed on a timer such that they capture an image of the

same area at different times in the same flight pass. Similarly, cameras could be placed

side-to-side to increase horizontal size of footprints (see Conn et al. 2016, Fig. 2, for a picture of

this setup). Extensions that use this framework for video surveys are also possible.

Another design consideration for the application of N -mixture models to aerial survey data

is the time it requires for animals to switch between the states of unavailable to available. That is,

This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le
Perry J. Williams et al. · Estimating abundance with aerial image data

whether ∆j is sufficiently large so that intersecting photographs are independent, conditional on

N(Ai). Sea otters are good candidates for these models because they are relatively shallow divers

with short dive durations (mean dive duration was 85 seconds; Bodkin et al. 2004). Further, the

calculated aerobic dive limit (cADL) for sea otters is < 5 mins (cADL for juveniles = 3.62 mins;

cADL for adults = 4.82 mins; Thometz et al. 2015). Gibbs et al. (1988) used aerial images to

estimate the number of great blue heron (Ardea herodias) nests. Many nests were unavailable for

detection due to vegetation obstructing nests from the line-of-sight of the camera. Because it is

unlikely that vegetation would change within the course of a survey, allowing additional nests to

be identified in subsequent images, the estimate of availability for these data might be biased

high, and therefore, nest counts biased low.

Aerial images are often taken along irregular flight paths that do not necessarily form a

rectangular grid that partitions a domain of interest, making traditional design-based estimates of

abundance difficult (Fig. 1; Ver Hoef & Jansen 2014). Our proposed methods used a model-based

approach for estimating abundance based on a spatial point process that can be integrated,

resulting in a Poisson regression model that matches the scale of the data, and subsequently, could

be incorporated in an N -mixture model. In our application, the abundance intensity was

determined by the parameters (β) using generalized linear regression. The model-based approach

provides additional flexibility, compared to design-based estimates, that allows incorporation of

spatial, temporal, or spatio-temporal autocorrelation (Cressie 1993, Cressie & Wikle 2011, Diggle

2013), and computationally efficient methods for fitting them (Hooten et al. 2013, Ver Hoef &

Jansen 2014, Hefley et al. 2017).

In our study, we achieved temporal replication by identifying a group of sea otters at a

location, and then conducting multiple flights over the group and taking images. We used this

method to reduce the possibility of spatial displacement by sea otters. Any flight plan could be

selected to obtain temporal replication of sites, provided it reasonably meets the assumptions of
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the model. Additionally, the precision and robustness of parameter estimates, with respect to the

number of replicate sites conducted, and the amount of overlap obtained in photographs, can be

evaluated using a simulation that is specific to individual study systems.

Finally, if detection probability is likely to change between survey periods (e.g., each year),

temporal replication of images can be incorporated into each survey using randomization, or

model-based optimization (e.g., Wikle & Royle 1999; 2005, Hooten et al. 2009). Alternatively, if

detection probability is not likely to change through time, a pilot study could be conducted to

examine availability bias, and then used as an informative prior distribution for future aerial

surveys, precluding the necessity to conduct replicate surveys during each sampling period.
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Supporting Information

Appendix S1

Script to simulate sea otter abundance, simulate sampling data, fit N -mixture model to sampling

data, and examine output.

Appendix S2

Script to fit N -mixture model to sea otter data, and examine output.
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Table 1: Counts of sea otters from aerial images taken at 20 sites in Glacier

Bay National Park, Alaska. Sampling occasion refers to the number of times

a site was flown over in an aircraft and a picture was taken of the same group

of sea otters.

Sampling occasion
1 2 3 4 5

Site 1 20 17 15 15
Site 2 60 62 58 55
Site 3 15 16 15 15
Site 4 8 12
Site 5 9 10
Site 6 19 20 19 19
Site 7 17 17 17 13
Site 8 52 53
Site 9 162 171
Site 10 37 40
Site 11 144 138
Site 12 21 25 17
Site 13 20 19 18 18
Site 14 86 83 87 91
Site 15 47 46
Site 16 21 20
Site 17 19 12
Site 18 2 1 1
Site 19 83 85 83 85 83
Site 20 55 48 52
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Figure 1: Depiction of aerial survey of domain D, with image locations A1, . . . , An. Overlapping
images provide temporal replication at sites where the images intersect.
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Figure 2: Marginal estimated posterior distributions (black lines) of parameters in aerial sea ot-
ter abundance model fit to simulated data. Red lines indicate values used to simulate data (see
Appendix S1).
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Figure 3: Left: True expected abundance (λ(s); top) and occupancy probability (φ(s); bottom)
used to simulate abundance data for sea otters in Glacier Bay National Park, southeastern Alaska,
USA. Right: The estimated expected abundance and occupancy probability using simulated aerial
photographs. The square-root of λ(s) was used to highlight spatial variation.
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Figure 4: Marginal estimated posterior distributions of detection probability and abundance from
aerial image data collected at 20 sites containing sea otters in Glacier Bay National Park, Alaska
(see Appendix S2).
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